openQCM – Powered by Novaetech S.r.l
Publications citing the applications of openQCM (by Novaetech S.r.l.) instruments and accessories in scientific research.
The list of scientific papers published on the most important journals showing the usage of openQCM in several scientific fields, such as thin film deposition, chemical sensors, biological research and biosensors.
Because of the large number of publications, we are reorganizing everything by subject areas. This will take some time. Thank you for your patience
Malhotra, Jaskaran Singh; Duarte, Clara Dávila; Reichert, Per; Krishnan, Deepthy; Sundberg, Jonas
Quantification of Methane in Water at Parts Per Billion Sensitivity Using a Metal–Organic Framework-Functionalized Quartz Crystal Resonator Journal Article
In: ACS Applied Nano Materials, 2025.
Abstract | Links | BibTeX | Tags: chemical sensors, greenhouse gas emissions, hydrocarbons, Metal organic frameworks, methane monitoring, openQCM NEXT, QCM, Quartz Crystal Microbalance, Thin films, wetlands
@article{malhotra2025quantification,
title = {Quantification of Methane in Water at Parts Per Billion Sensitivity Using a Metal–Organic Framework-Functionalized Quartz Crystal Resonator},
author = {Jaskaran Singh Malhotra and Clara Dávila Duarte and Per Reichert and Deepthy Krishnan and Jonas Sundberg},
url = {https://pubs.acs.org/doi/abs/10.1021/acsanm.4c06883},
doi = {https://doi.org/10.1021/acsanm.4c06883},
year = {2025},
date = {2025-02-26},
urldate = {2025-02-26},
journal = {ACS Applied Nano Materials},
publisher = {ACS Publications},
abstract = {Wetlands and water bodies are essential sources of methane emissions, a greenhouse gas that is roughly 25 times more potent than carbon dioxide. However, the biological production, fluxes, and interplay between methane and carbon dioxide due to microbial activity must be better understood. This is primarily attributed to the lack of sensor technology to provide the required spatial and temporal resolution. Herein, we demonstrate how a porous metal–organic framework material can create a sensor to quantify dissolved methane. The sensor is based on a quartz crystal microbalance, which measures methane adsorption using a quartz resonator functionalized with the material. Combining the quartz crystal microbalance and the nanoporous material yields fast response times and high sensitivity. This is due to a favorable partitioning coefficient between the empty pores of the material and the aqueous phase, promoting rapid migration of dissolved methane into the material. The result is a sensor system that achieves equilibration and response times under 60 s with parts per billion sensitivity. The high sensor performance is based on microporous pore size distribution, surface hydrophobicity, and crystallite size, yielding strong synergy. A fully functioning prototype has been designed, built, and evaluated to demonstrate real-life applicability and obtain a response from methane-spiked lake water. The modular nature of metal–organic frameworks opens possibilities for creating materials for selective sensing of other aqueous species. Thus, our study showcases the importance of materials for methane sensing and environmental monitoring in general.},
keywords = {chemical sensors, greenhouse gas emissions, hydrocarbons, Metal organic frameworks, methane monitoring, openQCM NEXT, QCM, Quartz Crystal Microbalance, Thin films, wetlands},
pubstate = {published},
tppubtype = {article}
}
Obořilová, Radka; Kučerová, Eliška; Botka, Tibor; Vaisocherová-Lísalová, Hana; Skládal, Petr; Farka, Zdeněk
Piezoelectric biosensor with dissipation monitoring enables the analysis of bacterial lytic agent activity Journal Article
In: Nature - Scientific Reports, vol. 15, no. 1, pp. 3419, 2025, ISSN: 2045-2322.
Abstract | Links | BibTeX | Tags: Antimicrobial treatment, Bacteriophages, biosensors, Multidrug-resistant bacteria, openQCM Q-1, Phage therapy, Phage-antibiotic synergy, Piezoelectric biosensor, QCM, QCM-D, Quartz Crystal Microbalance, Staphylococcus aureus
@article{Obořilová2025,
title = {Piezoelectric biosensor with dissipation monitoring enables the analysis of bacterial lytic agent activity},
author = {Radka Obořilová and Eliška Kučerová and Tibor Botka and Hana Vaisocherová-Lísalová and Petr Skládal and Zdeněk Farka},
url = {https://doi.org/10.1038/s41598-024-85064-x},
doi = {10.1038/s41598-024-85064-x},
issn = {2045-2322},
year = {2025},
date = {2025-01-27},
urldate = {2025-01-27},
journal = {Nature - Scientific Reports},
volume = {15},
number = {1},
pages = {3419},
abstract = {Antibiotic-resistant strains of Staphylococcus aureus pose a significant threat in healthcare, demanding urgent therapeutic solutions. Combining bacteriophages with conventional antibiotics, an innovative approach termed phage-antibiotic synergy, presents a promising treatment avenue. However, to enable new treatment strategies, there is a pressing need for methods to assess their efficacy reliably and rapidly. Here, we introduce a novel approach for real-time monitoring of pathogen lysis dynamics employing the piezoelectric quartz crystal microbalance (QCM) with dissipation (QCM-D) technique. The sensor, a QCM chip modified with the bacterium S. aureus RN4220 ΔtarM, was utilized to monitor the activity of the enzyme lysostaphin and the phage P68 as model lytic agents. Unlike conventional QCM solely measuring resonance frequency changes, our study demonstrates that dissipation monitoring enables differentiation of bacterial growth and lysis caused by cell-attached lytic agents. Compared to reference turbidimetry measurements, our results reveal distinct alterations in the growth curve of the bacteria adhered to the sensor, characterized by a delayed lag phase. Furthermore, the dissipation signal analysis facilitated the precise real-time monitoring of phage-mediated lysis. Finally, the QCM-D biosensor was employed to evaluate the synergistic effect of subinhibitory concentrations of the antibiotic amoxicillin with the bacteriophage P68, enabling monitoring of the lysis of P68-resistant wild-type strain S. aureus RN4220. Our findings suggest that this synergy also impedes the formation of bacterial aggregates, the precursors of biofilm formation. Overall, this method brings new insights into phage-antibiotic synergy, underpinning it as a promising strategy against antibiotic-resistant bacterial strains with broad implications for treatment and prevention.},
keywords = {Antimicrobial treatment, Bacteriophages, biosensors, Multidrug-resistant bacteria, openQCM Q-1, Phage therapy, Phage-antibiotic synergy, Piezoelectric biosensor, QCM, QCM-D, Quartz Crystal Microbalance, Staphylococcus aureus},
pubstate = {published},
tppubtype = {article}
}
Ahamed, Afri; Ooi, Chien Wei; Lim, Hui Jean; Ramakrishnan, N; Saha, Tridib
Elliptical Electrode Designs in Quartz Crystal Microbalances: Enhancing Sensitivity in Liquid Biosensing Applications Journal Article
In: Available at SSRN 5094062, 2025.
Abstract | Links | BibTeX | Tags: Deionised Water, DI Water, Elliptical Electrodes, Liquid Droplet Detection, openQCM Q-1, Protein Sensing, QCM, Quartz Crystal Microbalance
@article{ahamed5094062elliptical,
title = {Elliptical Electrode Designs in Quartz Crystal Microbalances: Enhancing Sensitivity in Liquid Biosensing Applications},
author = {Afri Ahamed and Chien Wei Ooi and Hui Jean Lim and N Ramakrishnan and Tridib Saha},
url = {https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5094062},
doi = {https://dx.doi.org/10.2139/ssrn.5094062},
year = {2025},
date = {2025-01-11},
urldate = {2025-01-11},
journal = {Available at SSRN 5094062},
abstract = {The demand for highly sensitive and versatile sensors is rapidly growing in biomedical applications, where specific, sensitive, and rapid detection are essential. Quartz crystal microbalance (QCM) is a popular analytical tool for such applications due to its high sensitivity and real-time monitoring capabilities. However, conventional QCM-based biosensing assays often suffer from poor sensitivity and high sample consumption, limiting their practicality. This study introduces a modified electrode design and a single droplet-based assay to enhance QCM-based bio-detection. Through extensive experiments, including contact angle analysis, damping, and viscosity measurements, we identified an optimal elliptical electrode design for single droplet-based liquid sensing. Using QCM crystals coated with molecularly imprinted polydopamine (MIPDA) sensing films containing recognition sites for detecting pepsin as a model protein, we demonstrate that QCM crystals with elliptical electrodes exhibit up to 10 times higher sensitivity than the industry-standard 1-inch circular QCM crystal. Additionally, the optimized QCM crystals showed linear sensitivity over a wider volume range, providing consistent detection at 250 Hz/μl compared to the circular crystal's narrower range at 50 Hz/μl. These findings establish a foundation for next-generation QCM platforms with superior sensitivity, reduced sample requirements, and broader adaptability, paving the way for advancements in biomedical diagnostics and environmental monitoring.},
keywords = {Deionised Water, DI Water, Elliptical Electrodes, Liquid Droplet Detection, openQCM Q-1, Protein Sensing, QCM, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {article}
}
ari, Ahmad Hasan As’; Aflaha, Rizky; Katriani, Laila; Kusumaatmaja, Ahmad; Yudianti, Rike; Triyana, Kuwat
In: Journal of Electronic Materials, pp. 1–13, 2024.
Abstract | Links | BibTeX | Tags: Adsorption, Ammonia, Chitosan, Nanofiber, openQCM, QCM, Quartz Crystal Microbalance
@article{as2024investigation,
title = {Investigation of the Multiple Doping of Citric Acid and Chitosan in Nanofiber for Enhancement of a Quartz Crystal Microbalance-Based Ammonia Sensor},
author = {Ahmad Hasan As’ ari and Rizky Aflaha and Laila Katriani and Ahmad Kusumaatmaja and Rike Yudianti and Kuwat Triyana},
url = {https://link.springer.com/article/10.1007/s11664-024-11646-0},
doi = {https://doi.org/10.1007/s11664-024-11646-0},
year = {2024},
date = {2024-12-19},
urldate = {2024-12-19},
journal = {Journal of Electronic Materials},
pages = {1--13},
publisher = {Springer},
abstract = {Herein, the use of multiple doping of citric acid (CA) and chitosan (CS) in polyacrylonitrile (PAN) nanofibers over a quartz crystal microbalance is investigated as a method for enhancing the performance of an ammonia sensor at room temperature. It was found that the PAN/CA/CS sensor has superior sensitivity and better selectivity. The PAN/CA/CS sensor demonstrated sensitivity of (0.629 ± 0.005) Hz ppm−1, which increased by 2.75 times compared to the PAN/CA sensor and 39 times compared to the PAN sensor. Chitosan doping also resulted in better selectivity, as shown by the decreased response of the PAN/CA/CS sensor compared to the PAN/CA sensor to other analytes including formaldehyde (−147%), acetic acid (−22%), ethanol (−19%), methanol (−15%), and acetone (−1%). The viscoelastic properties of chitosan might be responsible for the anti-Sauerbrey phenomena behind the enhanced selectivity. The detection and adsorption mechanisms of the fabricated sensors towards ammonia were studied using adsorption kinetics and isotherms. The adsorption kinetics varied and exhibited the limits of the high-concentration region of each sensor. Moreover, all the fabricated sensors followed the Freundlich adsorption isotherm with different adsorption processes, which were confirmed by scanning electron microscopy, x-ray diffraction, and Fourier transform infrared spectroscopy concerning the morphology, crystal structure, and active groups after the loading of citric acid and chitosan. Thus, the use of multiple doping can improve the sensor abilities, as well as causing changes in the detection and adsorption mechanisms.},
keywords = {Adsorption, Ammonia, Chitosan, Nanofiber, openQCM, QCM, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {article}
}
Dedecker, Kevin; Drobek, Martin; Julbe, Anne
In: RSC Applied Interfaces, 2024.
Abstract | Links | BibTeX | Tags: Adsorption, benzene, cyclohexane, hydrocarbons, n-hexane, openQCM, QCM, Quartz Crystal Microbalance
@article{dedecker2025selective,
title = {Selective Adsorption and Separation of C 6 Hydrocarbons: The Role of Structural Flexibility and Functionalization in Zeolitic Imidazolate Frameworks},
author = {Kevin Dedecker and Martin Drobek and Anne Julbe},
url = {https://pubs.rsc.org/en/content/articlehtml/2025/lf/d4lf00388h},
doi = {https://doi.org/10.1039/D4LF00388H},
year = {2024},
date = {2024-12-19},
urldate = {2024-12-19},
journal = {RSC Applied Interfaces},
publisher = {Royal Society of Chemistry},
abstract = {This study investigates the selective adsorption and separation of C6 hydrocarbons (benzene, cyclohexane, and n-hexane) by zeolitic imidazolate frameworks (ZIFs), focusing on their structural flexibility and functionalization. ZIF-8_CH3 and ZIF-8_Br were synthesized and compared, indicating distinct adsorption behaviors. ZIF-8_CH3 showed higher uptake for benzene (9.5 molecules per unit cell) and n-hexane (8.0 mlc uc−1) compared to cyclohexane (1.0 mlc uc−1). In contrast, ZIF-8_Br exhibited enhanced adsorption for cyclohexane (5.0 mlc uc−1) and reduced n-hexane uptake (0.5 mlc uc−1). Computational simulations supported these findings, identifying the involved host–guest interactions. Ideal adsorbed solution theory analysis confirmed that ZIF-8_CH3 demonstrated virtually zero uptake of cyclohexane from binary mixtures containing either n-hexane or benzene, while ZIF-8_Br exhibited negligible adsorption of n-hexane from its mixtures with cyclohexane or benzene. It was concluded that bromine functionalization in ZIF-8_Br increased structural rigidity and selectivity for aromatic compounds. These results highlight the crucial role of functionalization and gate-opening phenomena in ZIFs to achieve efficient volatile organic compound capture and separation where traditional adsorbents may not be effective.},
keywords = {Adsorption, benzene, cyclohexane, hydrocarbons, n-hexane, openQCM, QCM, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {article}
}
Aflaha, Rizky; Dzaki, Muammar Romiz; Katriani, Laila; As'ari, Ahmad Hasan; Maharani, Chlara Naren; Kuncaka, Agus; Natsir, Taufik Abdillah; Rianjanu, Aditya; Gupta, Ruchi; Triyana, Kuwat; Roto, Roto
A polyaniline-enhanced quartz crystal microbalance sensor for room-temperature camphor detection Journal Article
In: Anal. Methods, pp. -, 2024.
Abstract | Links | BibTeX | Tags: chromatography-mass spectroscopy, openQCM, PANi thin film, Polyaniline, QCM, Quartz Crystal Microbalance
@article{D4AY01859A,
title = {A polyaniline-enhanced quartz crystal microbalance sensor for room-temperature camphor detection},
author = {Rizky Aflaha and Muammar Romiz Dzaki and Laila Katriani and Ahmad Hasan As'ari and Chlara Naren Maharani and Agus Kuncaka and Taufik Abdillah Natsir and Aditya Rianjanu and Ruchi Gupta and Kuwat Triyana and Roto Roto},
url = {http://dx.doi.org/10.1039/D4AY01859A},
doi = {10.1039/D4AY01859A},
year = {2024},
date = {2024-12-18},
urldate = {2025-01-01},
journal = {Anal. Methods},
pages = {-},
publisher = {The Royal Society of Chemistry},
abstract = {A method to detect camphor gas is considered indispensable in the pharmaceutical industry. Unfortunately, the available sensors to detect the presence of camphor in the air are very limited and still on a laboratory scale, such as using chromatography-mass spectroscopy (GC-MS). The research's main focus is to obtain a portable sensing system with excellent sensitivity and selectivity. This study explored polyaniline (PANi) concentrations cast over PVAc nanofiber as a matrix to detect camphor gas using a quartz crystal microbalance (QCM) system to measure camphor exposure. Scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) were used to analyze the morphology and chemical composition of the fabricated active layer (i.e., nanofiber with PANi thin film). Increasing the PANi concentration provides more PANi on the sensor surface, thus amassing the active groups to interact with camphor gas molecules. It shows that a sensor with a 0.08% PANi thin film (Nano-PANi8) has a sensitivity of 2.594 Hz ppm−1, much greater than the sensor without PANi, which is only 0.305 Hz ppm−1. In addition, the sensor also has good repeatability and rapid response and recovery time of 47 s and 133 s, respectively. Compared to other gaseous compounds, the sensor also has excellent selectivity for camphor and robust long-term stability over three weeks of testing. The produced QCM sensor employing PANi thin film can give a camphor sensor superior performance, including excellent sensitivity, selectivity, and long-term stability. Furthermore, the use of QCM as a base sensor also makes the fabricated sensor portable.},
keywords = {chromatography-mass spectroscopy, openQCM, PANi thin film, Polyaniline, QCM, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {article}
}
Hunter, Saul J; Csányi, Evelin; Tyler, Joshua JS; Newell, Mark A; Farmer, Matthew AH; Ma, Camery; Sanderson, George; Leggett, Graham J; Johnson, Edwin C; Armes, Steven P
Covalent Capture of Nanoparticle-Stabilized Oil Droplets via Acetal Chemistry Using a Hydrophilic Polymer Brush Journal Article
In: Langmuir, 2024.
Abstract | Links | BibTeX | Tags: Adsorption, lipids, Liquids, Nanoemulsions, nanoparticles, openQCM NEXT, QCM, QCM-D, Quartz Crystal Microbalance
@article{hunter2024covalent,
title = {Covalent Capture of Nanoparticle-Stabilized Oil Droplets via Acetal Chemistry Using a Hydrophilic Polymer Brush},
author = {Saul J Hunter and Evelin Csányi and Joshua JS Tyler and Mark A Newell and Matthew AH Farmer and Camery Ma and George Sanderson and Graham J Leggett and Edwin C Johnson and Steven P Armes},
url = {https://pubs.acs.org/doi/full/10.1021/acs.langmuir.4c03897},
doi = {https://doi.org/10.1021/acs.langmuir.4c03897},
year = {2024},
date = {2024-12-06},
urldate = {2024-01-01},
journal = {Langmuir},
publisher = {ACS Publications},
abstract = {We report the capture of nanosized oil droplets using a hydrophilic aldehyde-functional polymer brush. The brush was obtained via aqueous ARGET ATRP of a cis-diol-functional methacrylic monomer from a planar silicon wafer. This precursor was then selectively oxidized using an aqueous solution of NaIO4 to introduce aldehyde groups. The oil droplets were prepared by using excess sterically stabilized diblock copolymer nanoparticles to prepare a relatively coarse squalane-in-water Pickering emulsion (mean droplet diameter = 20 μm). This precursor was then further processed via high-pressure microfluidization to produce ∼200 nm squalane droplets. We demonstrate that adsorption of these nanosized oil droplets involves acetal bond formation between the cis-diol groups located on the steric stabilizer chains and the aldehyde groups on the brush. This interaction occurs under relatively mild conditions and can be tuned by adjusting the solution pH. Hence this is a useful model system for understanding oil droplet interactions with soft surfaces.},
keywords = {Adsorption, lipids, Liquids, Nanoemulsions, nanoparticles, openQCM NEXT, QCM, QCM-D, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {article}
}
Dattilo, Marco; Patitucci, Francesco; Motta, Marisa Francesca; Prete, Sabrina; Galeazzi, Roberta; Franzè, Silvia; Perrotta, Ida; Cavarelli, Mariangela; Parisi, Ortensia Ilaria; Puoci, Francesco
In: Colloids and Surfaces B: Biointerfaces, pp. 114408, 2024, ISSN: 0927-7765.
Abstract | Links | BibTeX | Tags: Emulsion Polymerization, Molecular Recognition, Molecularly Imprinted Polymers (MIPs), Omicron Variant, openQCM NEXT, QCM, Quartz Crystal Microbalance, SARS-CoV-2, Spike Protein Receptor-Binding Domain (RBD)
@article{DATTILO2024114408,
title = {Molecularly Imprinted Polymers (MIPs) for SARS-CoV-2 Omicron variant inhibition: an alternative approach to address the challenge of emerging zoonoses},
author = {Marco Dattilo and Francesco Patitucci and Marisa Francesca Motta and Sabrina Prete and Roberta Galeazzi and Silvia Franzè and Ida Perrotta and Mariangela Cavarelli and Ortensia Ilaria Parisi and Francesco Puoci},
url = {https://www.sciencedirect.com/science/article/pii/S0927776524006672},
doi = {https://doi.org/10.1016/j.colsurfb.2024.114408},
issn = {0927-7765},
year = {2024},
date = {2024-11-26},
urldate = {2024-01-01},
journal = {Colloids and Surfaces B: Biointerfaces},
pages = {114408},
abstract = {ABSTRACT
Emerging zoonoses pose significant public health risks and necessitate rapid and effective treatment responses. This study enhances the technology for preparing Molecularly Imprinted Polymers (MIPs), which function as synthetic nanoparticles targeting SARS-CoV-2 receptor-binding domain (RBD), specifically the Omicron variant, thereby inhibiting its function. This study builds on previous findings by introducing precise adjustments in the formulation and process conditions to enhance particle stability and ensure better control over size and distribution, thereby overcoming the issues identified in earlier research. Following docking studies, imprinted nanoparticles were synthesized via inverse microemulsion polymerization and characterized in terms of size, morphology and surface charge. The selective recognition properties and ability of MIPs to obstruct the interaction between ACE2 and the RBD of SARS-CoV-2 were assessed in vitro, using Non-Imprinted Polymers (NIPs) as controls, and rebinding studies were conducted utilizing a Quartz Crystal Microbalance with Dissipation monitoring (QCM-D). The synthesized nanoparticles exhibited uniform dispersion and had a consistent diameter within the nanoscale range. MIPs demonstrated significant recognition properties and exhibited a concentration-dependent ability to reduce RBD binding to ACE2 without cytotoxic or sensitizing effects. MIPs-based platforms offer a promising alternative to natural antibodies for treating SARS-CoV-2 infections, therefore representing a versatile platform for managing emerging zoonoses.},
keywords = {Emulsion Polymerization, Molecular Recognition, Molecularly Imprinted Polymers (MIPs), Omicron Variant, openQCM NEXT, QCM, Quartz Crystal Microbalance, SARS-CoV-2, Spike Protein Receptor-Binding Domain (RBD)},
pubstate = {published},
tppubtype = {article}
}
Wang, Xintai; Alajmi, Asma; Wei, Zhangchenyu; Alzanbaqi, Mohammed; Wei, Naixu; Lambert, Colin; Ismael, Ali
Enhancing the Pressure-Sensitive Electrical Conductance of Self-Assembled Monolayers Journal Article
In: ACS Applied Materials & Interfaces, 2024.
Abstract | Links | BibTeX | Tags: AFM, Atomic Force Microscopy, Gauge factor, openQCM, Penetration, QCM, Quartz Crystal Microbalance, Self-Assembled Monolayers (SAMs), Tunnelling decay
@article{wang2024enhancing,
title = {Enhancing the Pressure-Sensitive Electrical Conductance of Self-Assembled Monolayers},
author = {Xintai Wang and Asma Alajmi and Zhangchenyu Wei and Mohammed Alzanbaqi and Naixu Wei and Colin Lambert and Ali Ismael},
url = {https://pubs.acs.org/doi/full/10.1021/acsami.4c15796},
doi = {https://doi.org/10.1021/acsami.4c15796},
year = {2024},
date = {2024-11-19},
urldate = {2024-01-01},
journal = {ACS Applied Materials & Interfaces},
publisher = {ACS Publications},
abstract = {The inherent large HOMO–LUMO gap of alkyl thiol (CnS) self-assembled monolayers (SAMs) has limited their application in molecular electronics. This work demonstrates significant enhancement of mechano-electrical sensitivity in CnS SAMs by external compression, achieving a gauge factor (GF) of approximately 10 for C10S SAMs. This GF surpasses values reported for conjugated wires and DNA strands, highlighting the potential of CnS SAMs in mechanosensitive devices. Conductive atomic force microscopy (cAFM) investigations reveal a strong dependence of GF on the alkyl chain length in probe/CnS/Au junctions. This dependence arises from the combined influence of molecular tilting and probe penetration, facilitated by the low Young’s modulus of alkyl chains. Theoretical simulations corroborate these findings, demonstrating a shift in the electrode Fermi level toward the molecular resonance region with increasing chain length and compression. Introducing a rigid graphene interlayer prevents probe penetration, resulting in a GF that is largely independent of the alkyl chain length. This highlights the critical role of probe penetration in maximizing mechano-electrical sensitivity. These findings pave the way for incorporating CnS SAMs into mechanosensitive and mechanocontrollable molecular electronic devices, including touch-sensitive electronic skin and advanced sensor technologies. This work demonstrates the potential of tailoring mechanical and electrical properties of SAMs through molecular engineering and interface modifications for optimized performance in specific applications.},
keywords = {AFM, Atomic Force Microscopy, Gauge factor, openQCM, Penetration, QCM, Quartz Crystal Microbalance, Self-Assembled Monolayers (SAMs), Tunnelling decay},
pubstate = {published},
tppubtype = {article}
}
Maity, Tanmoy; Sarkar, Susmita; Kundu, Susmita; Panda, Suvendu; Sarkar, Arighna; Hammad, Raheel; Mandal, Kalyaneswar; Ghosh, Soumya; Mondal, Jagannath; Haldar, Ritesh
Steering diffusion selectivity of chemical isomers within aligned nanochannels of metal-organic framework thin film Journal Article
In: Nature Communications, vol. 15, no. 1, pp. 1–9, 2024.
Abstract | Links | BibTeX | Tags: chemical isomers, Diffusion Selectivity, metal-organic frameworks, Molecular Separation, Nano Channels, openQCM, QCM, Quartz Crystal Microbalance
@article{maity2024steering,
title = {Steering diffusion selectivity of chemical isomers within aligned nanochannels of metal-organic framework thin film},
author = {Tanmoy Maity and Susmita Sarkar and Susmita Kundu and Suvendu Panda and Arighna Sarkar and Raheel Hammad and Kalyaneswar Mandal and Soumya Ghosh and Jagannath Mondal and Ritesh Haldar},
url = {https://www.nature.com/articles/s41467-024-53207-3#citeas},
doi = {https://doi.org/10.1038/s41467-024-53207-3},
year = {2024},
date = {2024-11-08},
urldate = {2024-11-08},
journal = {Nature Communications},
volume = {15},
number = {1},
pages = {1--9},
publisher = {Nature Publishing Group},
abstract = {The movement of molecules (i.e. diffusion) within angstrom-scale pores of porous materials such as metal-organic frameworks (MOFs) and zeolites is influenced by multiple complex factors that can be challenging to assess and manipulate. Nevertheless, understanding and controlling this diffusion phenomenon is crucial for advancing energy-economic membrane-based chemical separation technologies, as well as for heterogeneous catalysis and sensing applications. Through precise assessment of the factors influencing diffusion within a porous metal-organic framework (MOF) thin film, we have developed a chemical strategy to manipulate and reverse chemical isomer diffusion selectivity. In the process of cognizing the molecular diffusion within oriented, angstrom-scale channels of MOF thin film, we have unveiled a dynamic chemical interaction between the adsorbate (chemical isomers) and the MOF using a combination of kinetic mass uptake experiments and molecular simulation. Leveraging the dynamic chemical interactions, we have reversed the haloalkane (positional) isomer diffusion selectivity, forging a chemical pathway to elevate the overall efficacy of membrane-based chemical separation and selective catalytic reactions.},
keywords = {chemical isomers, Diffusion Selectivity, metal-organic frameworks, Molecular Separation, Nano Channels, openQCM, QCM, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {article}
}
Katriani, Laila; Aflaha, Rizky; As’ari, Ahmad Hasan; Nurwantoro, Pekik; Roto, Roto; Triyana, Kuwat
Nanofiber-coated quartz crystal microbalance with chitosan overlay for highly sensitive room temperature ammonia gas sensor Journal Article
In: Microchemical Journal, vol. 206, pp. 111532, 2024, ISSN: 0026-265X.
Abstract | Links | BibTeX | Tags: Ammonia, Chitosan, Nanofiber, openq, openQCM sensors, PVAc, QCM
@article{KATRIANI2024111532,
title = {Nanofiber-coated quartz crystal microbalance with chitosan overlay for highly sensitive room temperature ammonia gas sensor},
author = {Laila Katriani and Rizky Aflaha and Ahmad Hasan As’ari and Pekik Nurwantoro and Roto Roto and Kuwat Triyana},
url = {https://www.sciencedirect.com/science/article/pii/S0026265X24016448},
doi = {https://doi.org/10.1016/j.microc.2024.111532},
issn = {0026-265X},
year = {2024},
date = {2024-11-01},
urldate = {2024-11-01},
journal = {Microchemical Journal},
volume = {206},
pages = {111532},
abstract = {Ammonia is toxic and can pose health risks. Ensuring the safety of individuals working with or around ammonia sensors is crucial, adding complexity to the design and use of such sensors. An ammonia gas sensor by quartz crystal microbalance coated with chitosan-overlaid polyvinyl acetate (PVAc) nanofiber has been studied to have high performance in both sensitivity and selectivity. The scanning electron microscope (SEM) and Fourier-transform infrared (FTIR) spectroscopy were used to analyze the sensing surface, which was the electrospun PVAc nanofiber with chitosan overlay. The nanofiber showed a morphological change and had a more active layer after being overlaid by chitosan. The estimation of PVAc nanofiber thickness on the QCM sensor is (12.0 ± 2.1) µm, measured using a digital microscope. The QCM sensor deposited with PVAc nanofiber only had a sensitivity of 0.076 Hz·ppm−1. It improved to 3.012 Hz·ppm−1 after overlaid with 0.7 wt% chitosan (denoted as PVAc/Ch7 sensor), an increase of 39.6 times. Moreover, the PVAc/Ch7 sensor had a rapid response and recovery times of 9 and 35 s with a very low detection limit of 0.526 ppm. The sensor also exhibited good selectivity toward other analytes. In addition, the sensor also had outstanding in other performances, such as linearity, repeatability, reversibility, and excellent long-term stability. This proposed QCM-based ammonia sensor could be an alternative to analyzing ammonia in various fields.},
keywords = {Ammonia, Chitosan, Nanofiber, openq, openQCM sensors, PVAc, QCM},
pubstate = {published},
tppubtype = {article}
}
Forinová, Michala; Pilipenco, Alina; Lynn, N. Scott; Obořilová, Radka; Šimečková, Hana; Vrabcová, Markéta; Spasovová, Monika; Jack, Rachael; Horák, Petr; Houska, Milan; Skládal, Petr; Šedivák, Petr; Farka, Zdeněk; Vaisocherová-Lísalová, Hana
A reusable QCM biosensor with stable antifouling nano-coating for on-site reagent-free rapid detection of E. coli O157:H7 in food products Journal Article
In: Food Control, vol. 165, pp. 110695, 2024, ISSN: 0956-7135.
Abstract | Links | BibTeX | Tags: Antifouling coating, O157:H7 detection, On-site analysis, openQCM Q-1, QCM, QCM biosensor, Quartz Crystal Microbalance, Reusability
@article{FORINOVA2024110695b,
title = {A reusable QCM biosensor with stable antifouling nano-coating for on-site reagent-free rapid detection of E. coli O157:H7 in food products},
author = {Michala Forinová and Alina Pilipenco and N. Scott Lynn and Radka Obořilová and Hana Šimečková and Markéta Vrabcová and Monika Spasovová and Rachael Jack and Petr Horák and Milan Houska and Petr Skládal and Petr Šedivák and Zdeněk Farka and Hana Vaisocherová-Lísalová},
url = {https://www.sciencedirect.com/science/article/pii/S0956713524004122},
doi = {https://doi.org/10.1016/j.foodcont.2024.110695},
issn = {0956-7135},
year = {2024},
date = {2024-11-01},
urldate = {2024-11-15},
journal = {Food Control},
volume = {165},
pages = {110695},
abstract = {Numerous biosensors have shown exceptional analytical performance under laboratory conditions, yet only a few are capable of on-site use with complex, non-model samples while exhibiting reliable analytical performance. Here, we present a new portable biosensor for the rapid (30 min) and accurate detection of bacterial agents in “real-world” food samples, which are originally in either solid or liquid form. The biosensor combines well-established quartz crystal microbalance (QCM) technology, with innovative terpolymer brush nano-coatings on the sensing surface to efficiently reduce non-specific fouling from food samples. Following reagent-free sample preparation, where solid food samples are homogenized, we validated the sensor's detection capabilities on native pathogenic Escherichia coli O157:H7 (E. coli O157:H7) in hamburgers, Czech dumplings, and milk. We achieved limits of detection (LOD), as low as 7.5 × 102 CFU/mL in milk, a value approaching fundamental QCM limits, using a simple direct detection assay format. The biosensor's exceptional reusability was demonstrated through 60 sequential hamburger sample injections, resulting in only a minor LOD shift toward the end of series. A 10-min sonication treatment during sample preparation significantly enhanced sensitivity for E. coli O157:H7 in hamburgers and dumplings, yielding LODs as low as 3.1 × 10³ CFU/mL and 2.6 × 10⁴ CFU/mL, respectively. For on-site analysis, we integrated the nano-coated sensing chip into a custom-built four-channel portable QCM biosensor with an optimized microfluidic system, which can be produced on a scale suitable for practical deployment.},
keywords = {Antifouling coating, O157:H7 detection, On-site analysis, openQCM Q-1, QCM, QCM biosensor, Quartz Crystal Microbalance, Reusability},
pubstate = {published},
tppubtype = {article}
}
Baruah, Susmita; Betty, CA
Point of care devices for detection of Covid-19, malaria and dengue infections: A review Journal Article
In: Bioelectrochemistry, pp. 108704, 2024.
Abstract | Links | BibTeX | Tags: Covid −19, Dengue, openQCM, POC diagnostic devices, QCM, Quartz Crystal Microbalance
@article{baruah2024point,
title = {Point of care devices for detection of Covid-19, malaria and dengue infections: A review},
author = {Susmita Baruah and CA Betty},
url = {https://www.sciencedirect.com/science/article/abs/pii/S1567539424000665},
doi = {https://doi.org/10.1016/j.bioelechem.2024.108704},
year = {2024},
date = {2024-08-01},
urldate = {2024-08-01},
journal = {Bioelectrochemistry},
pages = {108704},
publisher = {Elsevier},
abstract = {Need for affordable, rapid and user-friendly point of care (POC) devices are increasing exponentially for strengthening the health care system in primary care as well as for self- monitoring in routine analysis. In addition to routine analysis of glucose, Covid-19 type fast spreading, infectious diseases have created further push for exploring rapid, cost-effective and self-monitoring diagnostic devices. Successful implementation of self-monitoring devices for Covid −19 has been realized. However, not much success has been realized for malaria and dengue which are two fatal diseases that affect the population in underdeveloped and developing countries. To monitor the presence of parasites for these diseases, rapid, onsite monitoring devices are still being explored. In this review, we present a review of the research carried out on electrochemical POC devices for monitoring infectious diseases such as Covid-19, malaria and dengue.
},
keywords = {Covid −19, Dengue, openQCM, POC diagnostic devices, QCM, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {article}
}
Forinová, Michala; Pilipenco, Alina; Lynn, N. Scott; Obořilová, Radka; Šimečková, Hana; Vrabcová, Markéta; Spasovová, Monika; Jack, Rachael; Horák, Petr; Houska, Milan; Skládal, Petr; Šedivák, Petr; Farka, Zdeněk; Vaisocherová-Lísalová, Hana
A reusable QCM biosensor with stable antifouling nano-coating for on-site reagent-free rapid detection of E. coli O157:H7 in food products Journal Article
In: Food Control, pp. 110695, 2024, ISSN: 0956-7135.
Abstract | Links | BibTeX | Tags: Antifouling coating, O157:H7 detection, On-site analysis, openQCM Q-1, QCM, QCM biosensor, Reusability
@article{FORINOVA2024110695,
title = {A reusable QCM biosensor with stable antifouling nano-coating for on-site reagent-free rapid detection of E. coli O157:H7 in food products},
author = {Michala Forinová and Alina Pilipenco and N. Scott Lynn and Radka Obořilová and Hana Šimečková and Markéta Vrabcová and Monika Spasovová and Rachael Jack and Petr Horák and Milan Houska and Petr Skládal and Petr Šedivák and Zdeněk Farka and Hana Vaisocherová-Lísalová},
url = {https://www.sciencedirect.com/science/article/pii/S0956713524004122},
doi = {https://doi.org/10.1016/j.foodcont.2024.110695},
issn = {0956-7135},
year = {2024},
date = {2024-07-01},
urldate = {2024-01-01},
journal = {Food Control},
pages = {110695},
abstract = {Numerous biosensors have shown exceptional analytical performance under laboratory conditions, yet only a few are capable of on-site use with complex, non-model samples while exhibiting reliable analytical performance. Here, we present a new portable biosensor for the rapid (30 min) and accurate detection of bacterial agents in "real-world" food samples, which are originally in either solid or liquid form. The biosensor combines well-established quartz crystal microbalance (QCM) technology, with innovative terpolymer brush nano-coatings on the sensing surface to efficiently reduce non-specific fouling from food samples. Following reagent-free sample preparation, where solid food samples are homogenized, we validated the sensor's detection capabilities on native pathogenic Escherichia coli O157:H7 (E. coli O157:H7) in hamburgers, Czech dumplings, and milk. We achieved limits of detection (LOD), as low as 7.5 × 102 CFU/mL in milk, a value approaching fundamental QCM limits, using a simple direct detection assay format. The biosensor's exceptional reusability was demonstrated through 60 sequential hamburger sample injections, resulting in only a minor LOD shift toward the end of the series. A 10-minute sonication treatment during sample preparation significantly enhanced sensitivity for E. coli O157:H7 in hamburgers and dumplings, yielding LODs as low as 3.1 × 10³ CFU/mL and 2.6 × 10⁴ CFU/mL, respectively. For on-site analysis, we integrated the nano-coated sensing chip into a custom-built four-channel portable QCM biosensor with an optimized microfluidic system, which can be produced on a scale suitable for practical deployment.},
keywords = {Antifouling coating, O157:H7 detection, On-site analysis, openQCM Q-1, QCM, QCM biosensor, Reusability},
pubstate = {published},
tppubtype = {article}
}
Min, Hyun Jung; Mina, Hansel A.; Shin, Sungho; Doh, Iyll-Joon; Robinson, J. Paul; Rajwa, Bartek; Deering, Amanda J.; Bae, Euiwon
Detection and confirmation of Salmonella Typhimurium by smartphone-enabled optomechanical platform Proceedings Article
In: Kim, Moon S.; Cho, Byoung-Kwan (Ed.): Sensing for Agriculture and Food Quality and Safety XVI, pp. 130600H, International Society for Optics and Photonics SPIE, 2024.
Abstract | Links | BibTeX | Tags: Antibody immobilization, openQCM, Portable device, QCM, Quartz Crystal Microbalance, Salmonella Typhimurium, Smartphone based detection method
@inproceedings{10.1117/12.3016099,
title = {Detection and confirmation of Salmonella Typhimurium by smartphone-enabled optomechanical platform},
author = {Hyun Jung Min and Hansel A. Mina and Sungho Shin and Iyll-Joon Doh and J. Paul Robinson and Bartek Rajwa and Amanda J. Deering and Euiwon Bae},
editor = {Moon S. Kim and Byoung-Kwan Cho},
url = {https://doi.org/10.1117/12.3016099},
doi = {10.1117/12.3016099},
year = {2024},
date = {2024-06-06},
urldate = {2024-01-01},
booktitle = {Sensing for Agriculture and Food Quality and Safety XVI},
volume = {13060},
pages = {130600H},
publisher = {SPIE},
organization = {International Society for Optics and Photonics},
abstract = {\textit{Salmonella} ser. Typhimurium is notorious for causing serious foodborne illnesses and presenting considerable public health risks. The study introduces an innovative system based on a quartz crystal microbalance, designed to detect the target pathogen by integrating the system around a smartphone. The system operates through a dual-mode approach, relying on two distinct mechanisms: measuring frequency changes due to variations in bacterial mass and quantifying fluorescence intensities resulting from bacteria captured by FITC-labeled antibodies. Incorporating FITC-labeled antibodies not only enhances the resonance frequency shift but also offers visual confirmation through the fluorescence signal. The integration of the quartz crystal microbalance system with a smartphone enables real-time monitoring. This system displays both frequency and temperature data, while also capturing fluorescence intensities to estimate the concentration of the target analyte. The smartphone-based system successfully detected \textit{Salmonella }Typhimurium within a concentration range of 10^{5} CFU/mL after the application of FITC-labeled antibodies. This portable QCM system represents a promising advancement in pathogen detection, holding significant potential to improve food safety protocols and strengthen public health safeguards.},
keywords = {Antibody immobilization, openQCM, Portable device, QCM, Quartz Crystal Microbalance, Salmonella Typhimurium, Smartphone based detection method},
pubstate = {published},
tppubtype = {inproceedings}
}
Javadzadehkalkhoran, Majid; Trabzon, Levent
Preparation and Characterization of Affordable Experimental Setup for Particulate Matter Sensing Journal Article
In: Sensing and Imaging, vol. 25, no. 1, pp. 29, 2024.
Abstract | Links | BibTeX | Tags: air quality, openQCM Q-1, Particulate matter, PM, PM generator, QCM, Quartz Crystal Microbalance
@article{javadzadehkalkhoran2024preparation,
title = {Preparation and Characterization of Affordable Experimental Setup for Particulate Matter Sensing},
author = {Majid Javadzadehkalkhoran and Levent Trabzon},
url = {https://link.springer.com/article/10.1007/s11220-024-00479-0},
doi = {https://doi.org/10.1007/s11220-024-00479-0},
year = {2024},
date = {2024-05-20},
urldate = {2024-05-20},
journal = {Sensing and Imaging},
volume = {25},
number = {1},
pages = {29},
publisher = {Springer},
abstract = {The interest in particulate matter (PM) sensors has significantly increased over the last decade. It is crucial to have a proper experimental setup to test these sensors. However, most devices used in PM test setups, both for generating and measuring PM, are bulky and expensive. This study aims to solve this issue by designing a cost-effective experimental setup. The setup includes a custom-made PM generator, small-sized laser and quartz crystal microbalance (QCM) sensors. The PM generator can produce PM from three different sources: dry powder, liquid suspension, and combustion. The QCM is used to overcome the limitations of laser sensors for sensing ultra-fine particles. Moreover, the performance of the QCM sensor has been investigated with various PM sources and ambient conditions. The study reveals that the QCM response can be influenced by the PM source and ambient conditions. Changes in PM composition and size significantly impact the QCM response. Additionally, relative humidity (RH) can alter the sensor response by up to 22%. While the temperature change in the flow has an insignificant effect on the bare QCM response, increasing the temperature from 25 °C to 30 °C results in a 12% change in the QCM response for the grease-coated sensor. Notably, the QCM sensor demonstrates the best response with small-sized smoke PMs, with the least impact from ambient conditions. The laser sensors work very well with large particles; however, they struggle with small-sized smoke PMs.},
keywords = {air quality, openQCM Q-1, Particulate matter, PM, PM generator, QCM, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {article}
}
Buksa, Hubert; Johnson, Edwin C; Chan, Derek HH; McBride, Rory J; Sanderson, George; Corrigan, Rebecca M; Armes, Steven P
Arginine-Functional Methacrylic Block Copolymer Nanoparticles: Synthesis, Characterization, and Adsorption onto a Model Planar Substrate Journal Article
In: Biomacromolecules, 2024.
Abstract | Links | BibTeX | Tags: aldehyde-functional, nanoparticles, openQCM NEXT, polymers, QCM, QCM-D, Quartz Crystal Microbalance
@article{buksa2024arginine,
title = {Arginine-Functional Methacrylic Block Copolymer Nanoparticles: Synthesis, Characterization, and Adsorption onto a Model Planar Substrate},
author = {Hubert Buksa and Edwin C Johnson and Derek HH Chan and Rory J McBride and George Sanderson and Rebecca M Corrigan and Steven P Armes},
url = {https://pubs.acs.org/doi/10.1021/acs.biomac.4c00128?goto=supporting-info},
doi = {https://pubs.acs.org/doi/10.1021/acs.biomac.4c00128?goto=supporting-info},
year = {2024},
date = {2024-05-02},
urldate = {2024-05-02},
journal = {Biomacromolecules},
publisher = {ACS Publications},
abstract = {Recently, we reported the synthesis of a hydrophilic aldehyde-functional methacrylic polymer (Angew. Chem., 2021, 60, 12032–12037). Herein we demonstrate that such polymers can be reacted with arginine in aqueous solution to produce arginine-functional methacrylic polymers without recourse to protecting group chemistry. Careful control of the solution pH is essential to ensure regioselective imine bond formation; subsequent reductive amination leads to a hydrolytically stable amide linkage. This new protocol was used to prepare a series of arginine-functionalized diblock copolymer nanoparticles of varying size via polymerization-induced self-assembly in aqueous media. Adsorption of these cationic nanoparticles onto silica was monitored using a quartz crystal microbalance. Strong electrostatic adsorption occurred at pH 7 (Γ = 14.7 mg m–2), whereas much weaker adsorption occurred at pH 3 (Γ = 1.9 mg m–2). These findings were corroborated by electron microscopy, which indicated a surface coverage of 42% at pH 7 but only 5% at pH 3},
keywords = {aldehyde-functional, nanoparticles, openQCM NEXT, polymers, QCM, QCM-D, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {article}
}
Al-Sodies, Salsabeel; Asiri, Abdullah M; Ismail, Sameh; Alamry, Khalid A; Abdo, Mahmoud Hussein
In: Materials Research Express, 2024.
Abstract | Links | BibTeX | Tags: contamination, Drinking water, GNPs (Graphene Nanoplatelets), MWCNTs (Multi-Walled Carbon Nanotubes), Nanocomposites, openQCM sensors, Poly(phenosafranine), Poly(safranine), QCM, Quartz Crystal Microbalance
@article{al2024development,
title = {Development of Poly (safranine-co-phenosafranine)/GNPs/MWCNTs Nanocomposites for Quartz Crystal Microbalance Sensor Detection of Arsenic (III) Ions},
author = {Salsabeel Al-Sodies and Abdullah M Asiri and Sameh Ismail and Khalid A Alamry and Mahmoud Hussein Abdo},
url = {https://iopscience.iop.org/article/10.1088/2053-1591/ad37a5/meta},
year = {2024},
date = {2024-04-12},
urldate = {2024-04-12},
journal = {Materials Research Express},
abstract = {Contamination of drinking water by heavy metals is extremely dangerous to human health. The formation of a quartz crystal microbalance (QCM) sensor for the rapid and portable detection of harmful heavy metals such as arsenic (As) ions in water samples is detailed in this work. Equimolar ratios of safranine (SF) and phenosafranine (Ph) copolymers (PSF-Ph) were synthesized via a chemical oxidative polymerization approach. The copolymer was modified with multi-wall carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) at different percentages (1, 3, 5, and 10%) to form nanocomposites of PSF-Ph/MWCNTs/GNPs. Thermal analysis of the nanocomposites revealed that the final polymer decomposition temperature (PDTfinal) values fell between 619 and 630 °C, and the nanocomposite with 10% loading exhibited the highest decomposition temperatures for T10, T30, and T50. The nanohybrid QCM sensor detected As(III) down to parts-per-billion levels based on the change in the oscillation frequency. The sensor was tested on water samples spiked with different concentrations of As(III) (0–20 ppb). A strong linear correlation (R2 ≈ 0.99) between the frequency shift and concentration with a low detection limit (0.1 ppb) validated the quantitative detection capability of the sensor. This QCM platform with an optimal recognition ligand is a promising field-deployable tool for on-site arsenic analysis in water.},
keywords = {contamination, Drinking water, GNPs (Graphene Nanoplatelets), MWCNTs (Multi-Walled Carbon Nanotubes), Nanocomposites, openQCM sensors, Poly(phenosafranine), Poly(safranine), QCM, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {article}
}
Prasetya, Nicholaus; Okur, Salih
Investigation of the Free-Base Zr-Porphyrin MOFs as Humidity Sensors for an Indoor Setting Journal Article
In: 2024.
Abstract | Links | BibTeX | Tags: Adsorption, humidity, openQCM, QCM, QCM sensor, Zr-porphyrin metal organic frameworks
@article{prasetya2024investigation,
title = {Investigation of the Free-Base Zr-Porphyrin MOFs as Humidity Sensors for an Indoor Setting},
author = {Nicholaus Prasetya and Salih Okur},
url = {https://chemrxiv.org/engage/chemrxiv/article-details/6608e3c466c138172950e040},
doi = {https://doi.org/10.26434/chemrxiv-2024-1jwr7},
year = {2024},
date = {2024-04-01},
urldate = {2024-04-01},
abstract = {Maintaining optimal relative humidity is paramount for human comfort. Therefore, the utilization of quartz crystal microbalance (QCM) as a humidity sensor platform holds significant promise due to its cost-effectiveness and high sensitivity. This study explores the efficacy of three free-base Zr porphyrin metal-organic frameworks (MOFs) - namely MOF-525, MOF-545, and NU-902 - as sensitive materials for QCM-based humidity sensors. Our extended experimental findings reveal that these materials exhibit notable sensitivity, particularly within relative humidity ranges of 40% to 100%. However, we observe potential irreversible adsorption sites within the MOF-545 framework, hindering its ability to revert to its initial state after prolonged exposure. In light of this observation, we conduct periodic cycling experiments at relative humidity levels of 40-70% to evaluate the measurement repeatability and feasibility of these sensors for indoor applications. Interestingly, the periodic cycling study demonstrates that MOF-545 shows promising repeatability, positioning it as a strong contender for indoor humidity sensing. In contrast, MOF-525 may necessitate extended desorption time, and NU-902 displays diminished sensitivity at low relative humidity levels. Nevertheless, a preliminary treatment of the MOF-545 QCM sensor may be necessary to address irreversible adsorption sites and uphold measurement repeatability, as only reversible adsorption sites are currently accessible. This study underscores the potential of MOF-based QCM sensors for effective humidity monitoring in indoor environments, thus facilitating improved comfort and environmental control.},
keywords = {Adsorption, humidity, openQCM, QCM, QCM sensor, Zr-porphyrin metal organic frameworks},
pubstate = {published},
tppubtype = {article}
}
Haldar, Ritesh; Maity, Tanmoy; Sarkar, Susmita; Kundu, Susmita; Panda, Suvendu; Sarkar, Arighna; Mandal, Kalyaneswar; Ghosh, Soumya; Mondal, Jagannath
Steering diffusion selectivity of chemical isomers within aligned nanochannels of metal-organic framework thin film Journal Article
In: 2024.
Abstract | Links | BibTeX | Tags: Metal organic frameworks, MOFs, molecular diffusion, nanoporous materials, openQCM sensors, QCM, Quartz Crystal Microbalance
@article{haldar2024steering,
title = {Steering diffusion selectivity of chemical isomers within aligned nanochannels of metal-organic framework thin film},
author = {Ritesh Haldar and Tanmoy Maity and Susmita Sarkar and Susmita Kundu and Suvendu Panda and Arighna Sarkar and Kalyaneswar Mandal and Soumya Ghosh and Jagannath Mondal},
url = {https://www.researchsquare.com/article/rs-4046811/v1},
doi = {https://doi.org/10.21203/rs.3.rs-4046811/v1},
year = {2024},
date = {2024-03-21},
urldate = {2024-03-21},
abstract = {The movement of molecules (i.e. diffusion) within angstrom-scale pores of porous materials such as metal-organic frameworks (MOFs) and zeolites is influenced by multiple complex factors that can be challenging to assess and manipulate. Nevertheless, understanding and controlling this diffusion phenomenon is crucial for advancing energy-economic membrane-based chemical separation technologies, as well as for heterogeneous catalysis and sensing applications. Through precise assessment of the factors influencing diffusion within a porous metal-organic framework (MOF) thin film, we have developed a chemical strategy to manipulate and reverse chemical isomer diffusion selectivity. In the process of cognizing the molecular diffusion within oriented, angstrom-scale channels of MOF thin film, we have unveiled a dynamic chemical interaction between the adsorbate (chemical isomers) and the MOF using a combination of kinetic mass uptake experiments and molecular simulation. Leveraging the dynamic chemical interactions, we have reversed the haloalkane (positional) isomer diffusion selectivity, forging a novel chemical pathway to elevate the overall efficacy of membrane-based chemical separation and selective catalytic reactions.},
keywords = {Metal organic frameworks, MOFs, molecular diffusion, nanoporous materials, openQCM sensors, QCM, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {article}
}
Sehit, Ekin; Yao, Guiyang; Battocchio, Giovanni; Radfar, Rahil; Trimpert, Jakob; Mroginski, Maria A; Süssmuth, Roderich; Altintas, Zeynep
In: ACS sensors, 2024.
Abstract | Links | BibTeX | Tags: Antigens, Drinking water, epitope imprinting, in silico-designed epitope-mediated adenovirus receptors, molecular dynamics, Monomers, openQCM Q-1, QCM, QCM sensor, Receptors, sensors, virus detection
@article{sehit2024computationally,
title = {Computationally Designed Epitope-Mediated Imprinted Polymers versus Conventional Epitope Imprints for the Detection of Human Adenovirus in Water and Human Serum Samples},
author = {Ekin Sehit and Guiyang Yao and Giovanni Battocchio and Rahil Radfar and Jakob Trimpert and Maria A Mroginski and Roderich Süssmuth and Zeynep Altintas},
url = {https://pubs.acs.org/doi/full/10.1021/acssensors.3c02374},
doi = {https://doi.org/10.1021/acssensors.3c02374},
year = {2024},
date = {2024-03-15},
urldate = {2024-03-15},
journal = {ACS sensors},
publisher = {ACS Publications},
abstract = {Detection of pathogenic viruses for point-of-care applications has attracted great attention since the COVID-19 pandemic. Current virus diagnostic tools are laborious and expensive, while requiring medically trained staff. Although user-friendly and cost-effective biosensors are utilized for virus detection, many of them rely on recognition elements that suffer major drawbacks. Herein, computationally designed epitope-imprinted polymers (eIPs) are conjugated with a portable piezoelectric sensing platform to establish a sensitive and robust biosensor for the human pathogenic adenovirus (HAdV). The template epitope is selected from the knob part of the HAdV capsid, ensuring surface accessibility. Computational simulations are performed to evaluate the conformational stability of the selected epitope. Further, molecular dynamics simulations are executed to investigate the interactions between the epitope and the different functional monomers for the smart design of eIPs. The HAdV epitope is imprinted via the solid-phase synthesis method to produce eIPs using in silico-selected ingredients. The synthetic receptors show a remarkable detection sensitivity (LOD: 102 pfu mL–1) and affinity (dissociation constant (Kd): 6.48 × 10–12 M) for HAdV. Moreover, the computational eIPs lead to around twofold improved binding behavior than the eIPs synthesized with a well-established conventional recipe. The proposed computational strategy holds enormous potential for the intelligent design of ultrasensitive imprinted polymer binders.},
keywords = {Antigens, Drinking water, epitope imprinting, in silico-designed epitope-mediated adenovirus receptors, molecular dynamics, Monomers, openQCM Q-1, QCM, QCM sensor, Receptors, sensors, virus detection},
pubstate = {published},
tppubtype = {article}
}
Skládal, Petr
Piezoelectric biosensors: shedding light on principles and applications Journal Article
In: Microchimica Acta, vol. 191, no. 4, pp. 184, 2024.
Abstract | Links | BibTeX | Tags: Cellular biosensors, Combined biosensing set-ups, Enzyme activity, Immunosensors, Microbial detection, openQCM, QCM, Quartz Crystal Microbalance
@article{skladal2024piezoelectric,
title = {Piezoelectric biosensors: shedding light on principles and applications},
author = {Petr Skládal},
url = {https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10920441/},
doi = {https://doi.org/10.1007%2Fs00604-024-06257-9},
year = {2024},
date = {2024-03-07},
urldate = {2024-03-07},
journal = {Microchimica Acta},
volume = {191},
number = {4},
pages = {184},
publisher = {Springer},
abstract = {The three decades of experience with piezoelectric devices applied in the field of bioanalytical chemistry are shared. After introduction to principles and suitable measuring approaches, active and passive methods based on oscillators and impedance analysis, respectively, the focus is directed towards biosensing approaches. Immunosensing examples are provided, followed by other affinity sensing approaches based on hybridization of nucleic acids, aptamers, monitoring of enzyme activities, and detection of pathogenic microbes. The combination of piezosensors with cell lines and testing of drugs is highlighted, including mechanically active cells. The combination of piezosensors with other measuring techniques providing original hybrid devices is briefly discussed.},
keywords = {Cellular biosensors, Combined biosensing set-ups, Enzyme activity, Immunosensors, Microbial detection, openQCM, QCM, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {article}
}
Razib, Mohd Asyraf Mohd; Mahadi, Aisyah Syafiqah; Ralib, Aliza Aini Md; Yusoff, Marmeezee Mohd; Ahmad, Farah B.
2024.
Abstract | Links | BibTeX | Tags: Biosensor, Carbon Nanotubes, openQCM Software, QCM, Quartz Crystal Microbalance, Sensing Layer
@bachelorthesis{nokey,
title = {Synthesis and Characterization of Multi-Walled Carbon Nanotube/Chitosan (Mwcnt/Cs) Composite as a Sensing Layer on Quartz Crystal Microbalance (Qcm) for Detection of Volatile Organic Compounds (Vocs)},
author = {Mohd Asyraf Mohd Razib and Aisyah Syafiqah Mahadi and Aliza Aini Md Ralib and Marmeezee Mohd Yusoff and Farah B. Ahmad},
url = {https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4727417},
year = {2024},
date = {2024-02-15},
urldate = {2024-02-15},
abstract = {Quartz crystal microbalance (QCM) is a sensor that can detect changes in nanogram mass. QCM alone is inadequate for detecting volatile organic compounds (VOCs) as it lacks sensitivity and selectivity for a gas sensor; thus, various sensing layers were suggested to be deposited. This study introduces multi-walled carbon nanotubes (MWCNT) and chitosan (CS) composite as a potential new sensing material. MWCNT has the advantage of a large surface area, improving the adsorption of gases. At the same time, CS is a natural biopolymer with a high affinity with VOCs as it is very hydrophilic. Harnessing advantages over both materials can study the response in profiling selective VOCs. Studies were conducted through the characterization of nanocomposite using Raman spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, and Scanning Electron Microscopy (SEM) to determine the properties of the MWCNT/CS composite on QCM toward VOCs. MWCNT/CS was prepared using glutaraldehyde as a cross-linker to form a covalent bond between MWCNT and CS via sonication. CS, MWCNT, and the composite were prepared for characterization analysis. The result of FTIR spectroscopy of MWCNT/CS showed NH2, C=O, and C-N bond at 3359.45 cm-1, 2160.51-2033.71 cm-1, and 1074.25 cm-1, respectively, showing that the functional group in CS was presented in the composite. The surface morphology of the MWCNTs/CS was detected using SEM. QCM sensor with gold electrodes was fabricated by drop-casting the composite on the working electrode of the QCM. Next, an adsorption test was conducted to study the sensitivity of the composite as the sensing layer using isopropyl alcohol (IPA, 13.1 M) as VOCs. The frequency shift of the IPA adsorption for the MWCNT/CS-based sensor was 95.2 Hz with a response time of 42s. The result shows that the MWCNT/CS can be a potential sensing layer to detect VOCs.},
keywords = {Biosensor, Carbon Nanotubes, openQCM Software, QCM, Quartz Crystal Microbalance, Sensing Layer},
pubstate = {published},
tppubtype = {bachelorthesis}
}
Gutiérrez, Julián; Robein, Yael N; Juan, Julián; Nezio, Mar'ia S Di; Pistonesi, Carolina; González, Estela A; Santos, Rodrigo; Pistonesi, Marcelo F
In: Sensors and Actuators B: Chemical, pp. 135233, 2023.
Abstract | Links | BibTeX | Tags: Arsenic, Functional Theory (DFT) Calculations, LOD, nZVI/rGO, openQCM, QCM
@article{gutierrez2023combined,
title = {A combined experimental and DFT study on the zero valent iron/reduced graphene oxide doped QCM sensor for determination of trace concentrations of As using a Flow-batch system},
author = {Julián Gutiérrez and Yael N Robein and Julián Juan and Mar'ia S Di Nezio and Carolina Pistonesi and Estela A González and Rodrigo Santos and Marcelo F Pistonesi},
url = {https://www.sciencedirect.com/science/article/abs/pii/S0925400523019512},
doi = {https://doi.org/10.1016/j.snb.2023.135233},
year = {2023},
date = {2023-12-30},
urldate = {2023-12-30},
journal = {Sensors and Actuators B: Chemical},
pages = {135233},
publisher = {Elsevier},
abstract = {A sensor based on a gold Quartz Crystal Microbalance (QCM) modified with nanoscale zero-valent iron nanoparticles (nZVI) anchored to reduced graphene oxide (rGO) was developed. An automated measurement microsystem was employed using QCM (modified and unmodified) as an arsine detector device. The QCM measurements of frequency changes are associated with total As concentration (III/V) in the samples. The gold surface QCM modification with nZVI/rGO improved the sensitivity in total As determination. The limit of detection (LOD) was 0.0062
for QCM-Au/nZVI/rGO, 100 times higher than the unmodified QCM-Au sensor. Moreover, studies of adsorption energy and electron density of As with QCM-Au/nZVI/rGO and QCM-Au systems were performed. For this purpose, Density Functional Theory (DFT) methodology was used employing arsine adsorption on magnetite nanoparticles supported on graphene, and also on Au as models. This theoretical-experimental research allows us to acquire knowledge of the interaction of Au/nZVI/rGO with As and confirms the experimental results.},
keywords = {Arsenic, Functional Theory (DFT) Calculations, LOD, nZVI/rGO, openQCM, QCM},
pubstate = {published},
tppubtype = {article}
}
Liu, Qiangqiang; Chen, Jiankui; Yang, Hua; Yin, Zhouping
Prior Guided Multi-Scale Dynamic Deblurring Network for Diffraction Image Restoration in Droplet Measurement Journal Article
In: IEEE Transactions on Instrumentation and Measurement, 2023.
Abstract | Links | BibTeX | Tags: Calibration, Diffraction, droplet measurement, openQCM, Optical diffraction, QCM, Transformers
@article{liu2023prior,
title = {Prior Guided Multi-Scale Dynamic Deblurring Network for Diffraction Image Restoration in Droplet Measurement},
author = {Qiangqiang Liu and Jiankui Chen and Hua Yang and Zhouping Yin},
url = {https://ieeexplore.ieee.org/abstract/document/10363398},
doi = {https://doi.org/10.1109/TIM.2023.3343743},
year = {2023},
date = {2023-12-18},
urldate = {2023-12-18},
journal = {IEEE Transactions on Instrumentation and Measurement},
publisher = {IEEE},
abstract = {High-precision measurement of micrometer-scale flying droplets is demanded in inkjet printing manufacturing. However, the measurement accuracy is limited by droplet image degradation caused by optical diffraction and actual imaging conditions. Most existing image restoration methods focus on defocus blur and motion blur and pay less attention to diffraction degradation, which cannot handle real-world complex degradation well. In this study, to address the challenges in droplet image restoration, we propose a diffraction-Gaussian degradation framework to simulate actual degradation and a prior guided multiscale dynamic deblurring network (PDDN) for image restoration. PDDN explicitly utilizes degradation prior information with the proposed fast Fourier transform (FFT)-based prior extraction (FPE) module and the multiscale dynamic deblurring (MSDD) module. FPE extracts the degradation prior with the combination of Weiner deconvolution and deep learning. MSDD restores intermediate features using kernel prediction-based dynamic convolution under the guidance of the learned prior. PDDN employs a U-shaped Transformer architecture along with prior guided dynamic deblurring to achieve nonblind deblurring. Experiments on four synthesized datasets demonstrate that PDDN achieves state-of-the-art performance in diffraction image restoration. The effectiveness of the degradation framework and PDDN is proved in real-world image restoration, with droplet measurement accuracy improved from 3% to 2.42%.},
keywords = {Calibration, Diffraction, droplet measurement, openQCM, Optical diffraction, QCM, Transformers},
pubstate = {published},
tppubtype = {article}
}
Saffari, Zahra; Cohan, Reza Ahangari; Sepahi, Mina; Sadeqi, Mahdi; Khoobi, Mehdi; Fard, Mojtaba Hamidi; Ghavidel, Amir; Amiri, Fahimeh Bagheri; Aghasadeghi, Mohammad Reza; Norouzian, Dariush
Signal amplification of a quartz crystal microbalance immunosensor by gold nanoparticles-polyethyleneimine for hepatitis B biomarker detection Journal Article
In: Scientific Reports, vol. 13, no. 1, pp. 21851, 2023.
Abstract | Links | BibTeX | Tags: biomarker, hepatitis B, immunosensor, nanoparticles-polyethyleneimine, openQCM, openQCM sensors, QCM
@article{saffari2023signal,
title = {Signal amplification of a quartz crystal microbalance immunosensor by gold nanoparticles-polyethyleneimine for hepatitis B biomarker detection},
author = {Zahra Saffari and Reza Ahangari Cohan and Mina Sepahi and Mahdi Sadeqi and Mehdi Khoobi and Mojtaba Hamidi Fard and Amir Ghavidel and Fahimeh Bagheri Amiri and Mohammad Reza Aghasadeghi and Dariush Norouzian},
url = {https://www.nature.com/articles/s41598-023-48766-2},
doi = {https://doi.org/10.1038/s41598-023-48766-2},
year = {2023},
date = {2023-12-09},
urldate = {2023-12-09},
journal = {Scientific Reports},
volume = {13},
number = {1},
pages = {21851},
publisher = {Nature Publishing Group UK London},
abstract = {The procedures currently used for hepatitis B (HB) detection are not suitable for screening, clinical diagnosis, and point-of-care testing (POCT). Therefore, we developed and tested a QCM-based immunosensor by surface modification with AuNP-PEIs to amplify the signal and provide an oriented-immobilization surface. The AuNP-PEIs were characterized by ICP-Mass, UV/Vis, DLS, FE-SEM, and ATR-FTIR. After coating AuNP-PEIs on the gold electrode surface, anti-HBsAg antibodies were immobilized using NHS/EDC chemistry based on response surface methodology (RSM) optimization. The efficiency of the immunosensor was assessed by human sera and data were compared to gold-standard ELISA using receiver-operating-characteristic (ROC) analysis. FE-SEM, AFM, EDS, and EDS mapping confirmed AuNP-PEIs are homogeneously distributed on the surface with a high density and purity. After antibody immobilization, the immunosensor exhibited good recognition of HBsAg with a calibration curve of ∆F = − 6.910e-7x + 10(R2 = 0.9905), a LOD of 1.49 ng/mL, and a LOQ of 4.52 ng/mL. The immunosensor yielded reliable and accurate results with a specificity of 100% (95% CI 47.8–100.0) and sensitivity of 100% (95% CI 96.2–100.0). In conclusion, the fabricated immunosensor has the potential as an analytic tool with high sensitivity and specificity. However, further investigations are needed to convert it to a tiny lab-on-chip for HB diagnosis in clinical samples.},
keywords = {biomarker, hepatitis B, immunosensor, nanoparticles-polyethyleneimine, openQCM, openQCM sensors, QCM},
pubstate = {published},
tppubtype = {article}
}
Javadzadehkalkhoran, Majid; Trabzon, Levent
Preparation and Characterization of Affordable Experimental Sensors Array for Particulate Matter Sensing Journal Article
In: 2023.
Abstract | Links | BibTeX | Tags: openQCM, openQCM Q-1, Particulate matter, PM generator, PM test setup, QCM, QCM sensor, Sensor array
@article{javadzadehkalkhoran2023preparation,
title = {Preparation and Characterization of Affordable Experimental Sensors Array for Particulate Matter Sensing},
author = {Majid Javadzadehkalkhoran and Levent Trabzon},
url = {https://www.researchsquare.com/article/rs-3654975/v1},
doi = {https://doi.org/10.21203/rs.3.rs-3654975/v1},
year = {2023},
date = {2023-12-06},
urldate = {2023-12-06},
abstract = {Interest for particulate matter (PM) sensors has increased significantly during last decade. Having a proper experimental setup to test these sensors is necessary. Most of the devices that are used in the PM test setups for both PM generating and measuring are bulky and expensive. In this study a cost-effective experimental setup has been designed with a custom made PM generator and small size laser and quartz crystal microbalance (QCM) sensors. The generator has the capability of producing PM from three different sources: dry powder, liquid suspension and combustion. The QCM completes the weakness of small laser sensors for sensing the ultra-fine particles. Moreover, performance of the QCM sensor has been investigated with different PM sources and different ambient conditions. It has been found that the response of QCM could be affected from PM source and ambient condition. The change in PM composition and size causes notable impact on QCM response. Relative humidity (RH) also could change the sensor response up to 22%. While changing the temperature of the flow has not significant effect on QCM response, increasing the temperature from 25°C to 30°C caused 12% change in QCM response in grease-coated one. The QCM sensor has the best response with small size smoke PM’s with lowest effect from ambient conditions.},
keywords = {openQCM, openQCM Q-1, Particulate matter, PM generator, PM test setup, QCM, QCM sensor, Sensor array},
pubstate = {published},
tppubtype = {article}
}
Stuart, Daniel David
Advancing Label Free Detection Techniques Through Surface Based Sensing and Machine Learning PhD Thesis
University of California, Riverside, 2023.
Abstract | Links | BibTeX | Tags: openQCM, openQCM Q-1, QCM, QCM sensor, QCM-D, SARS-CoV-2
@phdthesis{stuart2023advancing,
title = {Advancing Label Free Detection Techniques Through Surface Based Sensing and Machine Learning},
author = {Daniel David Stuart},
url = {https://escholarship.org/uc/item/2cr290xf},
year = {2023},
date = {2023-12-01},
urldate = {2023-12-01},
school = {University of California, Riverside},
abstract = {High-performing sensors have played a pivotal role in expanding our understanding of biological systems, disease diagnosis, environmental monitoring, and national security. The technical capability they provide has enabled us to obtain in-depth information and insights towards improving human health. One area of sensing that exemplifies this progress is the development of label free sensors which allow direct analysis of molecular interactions. Among these methods surface plasmon resonance (SPR) has emerged as a powerful, real-time detection technique for studies of biological interactions, drug discovery, and other important aspects that lead to new disease diagnosis. Through the implementation of new materials and methods SPR and other label-free sensors have expanded the range of analytes tested. This Dissertation aims to establish improvements in materials and methodologies through technology advancement for solving current sensor limitations. The work focuses on enhancing sensing signal while limiting the impact of nonspecific interactions on label-free methods, providing expanded molecular identity information, and overcoming challenges encountered when detecting small molecules. Chapters 2, 3, and 4 demonstrate advancements in unique biomimetic surfaces to enable the exploration of new biological systems as well as block nonspecific interactions. Chapter 2 focuses on a tethered membrane system to promote incorporation of relevant constituents into lipid bilayers without compromising membrane mobility property and drug delivery interactions. Chapter 3 employs a charged membrane to suppress nonspecific interactions and explores the working mechanism. Chapter 4 expands the capabilities of label-free sensing systems through development of curved membrane platforms that mitigate the decay limits through modeling of lipid distribution in vesicles. Chapter 5 exploits the plasmonic properties of SPR chips to enhance signals in matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) , which is further facilitated with development of machine learning models to identify bacterial species. In Chapter 6, the limitation of small molecule analysis with SPR is tackled by taking advantage of pressure effects to provide specific gas sensing. Each of these Chapters provides novel advancements in sensing capabilities by addressing performance-impairing limitations in label-free sensors. Research goals are achieved both from improvements to SPR systems and incorporation of other methodologies to augment SPR results.},
keywords = {openQCM, openQCM Q-1, QCM, QCM sensor, QCM-D, SARS-CoV-2},
pubstate = {published},
tppubtype = {phdthesis}
}
Malhotra, Jaskaran Singh; Reichert, Per Holger; Sundberg, Jonas
A Quartz Crystal Resonator Modified with a Metal-Organic Framework for Sensing of Benzene, Ethylbenzene, Toluene and Xylenes in Water Proceedings Article
In: 2023 IEEE SENSORS, pp. 1–4, IEEE 2023.
Abstract | Links | BibTeX | Tags: Adsorption, analyte discrimination, BTEX sensor, Harmonic analysis, metal-organic frameworks, openQCM, QCM, Resonant frequency, Sensitivity, sensors, Stability analysis
@inproceedings{malhotra2023quartz,
title = {A Quartz Crystal Resonator Modified with a Metal-Organic Framework for Sensing of Benzene, Ethylbenzene, Toluene and Xylenes in Water},
author = {Jaskaran Singh Malhotra and Per Holger Reichert and Jonas Sundberg},
url = {https://ieeexplore.ieee.org/abstract/document/10325196},
doi = {https://doi.org/10.1109/SENSORS56945.2023.10325196},
year = {2023},
date = {2023-11-28},
urldate = {2023-11-28},
booktitle = {2023 IEEE SENSORS},
pages = {1--4},
organization = {IEEE},
abstract = {This work describes the use of a quartz crystal microbalance (QCM) based sensor for gravimetric sensing of benzene, toluene, ethylbenzene, and xylenes (BTEX). A film of a Cu-based metal-organic framework (MOF) capable of BTEX adsorption is deposited on the gold electrode of a quartz resonator (10 MHz). The sensor is operated under constant flow of water, simultaneously measuring frequency shifts in multiple harmonics. Introduction of BTEX compounds in the water shifts the frequency, enabling detection. Analysis of deviation in the 3 rd and 5 th harmonics enables discrimination of response from either of the BTEX molecules. The response time further enables understanding of diffusion kinetics of each molecule into the framework.},
keywords = {Adsorption, analyte discrimination, BTEX sensor, Harmonic analysis, metal-organic frameworks, openQCM, QCM, Resonant frequency, Sensitivity, sensors, Stability analysis},
pubstate = {published},
tppubtype = {inproceedings}
}
Muff, Livius F; Balog, Sandor; Adamcik, Jozef; Weder, Christoph; Lehner, Roman
Preparation of Well-Defined Fluorescent Nanoplastic Particles by Confined Impinging Jet Mixing Journal Article
In: Environmental Science & Technology, 2023.
Abstract | Links | BibTeX | Tags: confined impinging jet (CIJ) mixer, flash nanoprecipitation, fluorescent label, fluorophore, nanoemulsion, nanoplastic, openQCM, polymer nanoparticles, QCM, Quartz Crystal Microbalance, shape modification
@article{muff2023preparation,
title = {Preparation of Well-Defined Fluorescent Nanoplastic Particles by Confined Impinging Jet Mixing},
author = {Livius F Muff and Sandor Balog and Jozef Adamcik and Christoph Weder and Roman Lehner},
url = {https://link.springer.com/article/10.1557/s43579-023-00492-6},
doi = {https://doi.org/10.1557/s43579-023-00492-6},
year = {2023},
date = {2023-11-01},
urldate = {2023-11-01},
journal = {Environmental Science & Technology},
publisher = {ACS Publications},
abstract = {Research on the origin, distribution, detection, identification, and quantification of polymer nanoparticles (NPs) in the environment and their possible impact on animal and human health is surging. For different types of studies in this field, well-defined reference materials or mimics are needed. While isolated reports on the preparation of such materials are available, a simple and broadly applicable method that allows for the production of different NP types with well-defined, tailorable characteristics is still missing. Here, we demonstrate that a confined impinging jet mixing process can be used to prepare colloidally stable NPs based on polystyrene, polyethylene, polypropylene, and poly(ethylene terephthalate) with diameters below < 100 nm. Different fluorophores were incorporated into the NPs, to allow their detection in complex environments. To demonstrate their utility and detectability, fluorescent NPs were exposed to J774A.1 macrophages and visualized using laser scanning microscopy. Furthermore, we modified the NPs in a postfabrication process and changed their shape from spherical to heterogeneous geometries, in order to mimic environmentally relevant morphologies. The methodology used here should be readily applicable to other polymers and payloads and thus a broad range of NPs that enable studies of their behavior, uptake, translocation, and biological end points in different systems.},
key = {QC; openQCM, Quartz Crystal Microbalance},
keywords = {confined impinging jet (CIJ) mixer, flash nanoprecipitation, fluorescent label, fluorophore, nanoemulsion, nanoplastic, openQCM, polymer nanoparticles, QCM, Quartz Crystal Microbalance, shape modification},
pubstate = {published},
tppubtype = {article}
}
Milsom, Adam; Qi, Shaojun; Mishra, Ashmi; Berkemeier, Thomas; Zhang, Zhenyu; Pfrang, Christian
In: EGUsphere, vol. 23, iss. 19, pp. 10835–10843, 2023.
Abstract | Links | BibTeX | Tags: aerosol, Dissipation Monitoring, films, openQCM NEXT, Ozone, pollutants, pollution, QCM, QCM-D, Quartz Crystal Microbalance
@article{milsom2023situ,
title = {In-situ measurements and modelling of the oxidation kinetics in films of a cooking aerosol proxy using a Quartz Crystal Microbalance with Dissipation monitoring (QCM-D)},
author = {Adam Milsom and Shaojun Qi and Ashmi Mishra and Thomas Berkemeier and Zhenyu Zhang and Christian Pfrang},
url = {https://acp.copernicus.org/articles/23/10835/2023/},
doi = {https://doi.org/10.5194/acp-23-10835-2023},
year = {2023},
date = {2023-10-04},
urldate = {2023-10-04},
journal = {EGUsphere},
volume = {23},
issue = {19},
pages = {10835–10843},
publisher = {Copernicus Publications Göttingen, Germany},
abstract = {Aerosols and films are found in indoor and outdoor environments. How they interact with pollutants, such as ozone, has a direct impact on our environment via cloud droplet formation and the chemical persistence of toxic aerosol constituents. The chemical reactivity of aerosol emissions is typically measured spectroscopically or by techniques such as mass spectrometry, directly monitoring the amount of material during a chemical reaction. We present a study which indirectly measures oxidation kinetics in a common cooking aerosol proxy using a low-cost quartz crystal microbalance with dissipation monitoring (QCM-D). We validated this approach by comparison with kinetics measured both spectroscopically and with high-intensity synchrotron radiation. Using microscopy, we found that the film morphology changed and film rigidity increased during oxidation. There was evidence of surface crust formation on oxidised particles, though this was not consistent for all experiments. Crucially, our kinetic modelling of these experimental data confirmed that the oleic acid decay rate is in line with previous literature determinations, which demonstrates that performing such experiments on a QCM-D does not alter the underlying mechanism. There is clear potential to take this robust and low-cost but sensitive method to the field for in situ monitoring of reactions outdoors and indoors.},
keywords = {aerosol, Dissipation Monitoring, films, openQCM NEXT, Ozone, pollutants, pollution, QCM, QCM-D, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {article}
}
Neville, George M; Dobre, Ana-Maria; Smith, Gavin J; Micciulla, Samantha; Brooks, Nick J; Arnold, Thomas; Welton, Tom; Edler, Karen J
Interactions of Choline and Geranate (CAGE) and Choline Octanoate (CAOT) Deep Eutectic Solvents with Lipid Bilayers Journal Article
In: Advanced Functional Materials, pp. 2306644, 2023.
Abstract | Links | BibTeX | Tags: Choline, Choline Octanoate, geranic acid, openQCM Q-1, QCM, QCM-D
@article{neville2023interactions,
title = {Interactions of Choline and Geranate (CAGE) and Choline Octanoate (CAOT) Deep Eutectic Solvents with Lipid Bilayers},
author = {George M Neville and Ana-Maria Dobre and Gavin J Smith and Samantha Micciulla and Nick J Brooks and Thomas Arnold and Tom Welton and Karen J Edler},
url = {https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202306644},
doi = {https://doi.org/10.1002/adfm.202306644},
year = {2023},
date = {2023-10-02},
urldate = {2023-10-02},
journal = {Advanced Functional Materials},
pages = {2306644},
publisher = {Wiley Online Library},
abstract = {Aerosols and films are found in indoor and outdoor environments. How they interact with pollutants, such as ozone, has a direct impact on our environment via cloud droplet formation and the chemical persistence of toxic aerosol constituents. The chemical reactivity of aerosol emissions is typically measured spectroscopically or by techniques such as mass spectrometry, directly monitoring the amount of material during a chemical reaction. We present a study which indirectly measures oxidation kinetics in a common cooking aerosol proxy using a low-cost quartz crystal microbalance with dissipation monitoring (QCM-D). We validated this approach by comparison with kinetics measured both spectroscopically and with high-intensity synchrotron radiation. Using microscopy, we found that the film morphology changed and film rigidity increased during oxidation. There was evidence of surface crust formation on oxidised particles, though this was not consistent for all experiments. Crucially, our kinetic modelling of these experimental data confirmed that the oleic acid decay rate is in line with previous literature determinations, which demonstrates that performing such experiments on a QCM-D does not alter the underlying mechanism. There is clear potential to take this robust and low-cost but sensitive method to the field for in situ monitoring of reactions outdoors and indoors.},
key = {Choline, Choline Octanoate, geranic acid, openQCM Q-1, QCM, QCM-D},
keywords = {Choline, Choline Octanoate, geranic acid, openQCM Q-1, QCM, QCM-D},
pubstate = {published},
tppubtype = {article}
}
Neville, George; Dobre, Ana-Maria; Smith, Gavin; Micciulla, Samantha; Brooks, Nick; Arnold, Thomas; Welton, Tom; Edler, Karen
Dataset for Journal Article
In: 2023.
Abstract | Links | BibTeX | Tags: deep eutectic solvents, ionic liquids, lipid bilayers, neutron reflectivity, neutron scattering, openQCM Q-1, QCM, transdermal delivery
@article{neville2023dataset,
title = {Dataset for},
author = {George Neville and Ana-Maria Dobre and Gavin Smith and Samantha Micciulla and Nick Brooks and Thomas Arnold and Tom Welton and Karen Edler},
url = {https://researchdata.bath.ac.uk/1289/},
doi = {https://doi.org/10.15125/BATH-01289},
year = {2023},
date = {2023-10-02},
urldate = {2023-10-02},
publisher = {University of Bath},
abstract = {Deep eutectic solvents (DES) and ionic liquids (ILs) are often amphiphilic and interact with phospholipid membranes. Mixtures between choline and gernanic acid, coined 'CAGE', have been found to facilitate the transdermal delivery of larger pharmaceuticals, such as insulin. However, little is known about its mechanism of activity. The purpose for obtaining this data was to characterise aqueous suspensions of choline and germanic acid (CAGE) and choline and octanoic acid (CAOT) and compare their interactions with solid-supported lipid bilayers and vesicle layers. Particularly, dynamic light scattering (DLS) and quartz crystal microbalance with dissipation (QCM-D) measurements were used alongside neutron reflectivity (NR) to evaluate any structure-function relationships contributing to the DES behaviour, aiming towards the rational design of neoteric solvents for transdermal delivery.},
keywords = {deep eutectic solvents, ionic liquids, lipid bilayers, neutron reflectivity, neutron scattering, openQCM Q-1, QCM, transdermal delivery},
pubstate = {published},
tppubtype = {article}
}
Aflaha, Rizky; Sari, Nur Laili Indah; Katriani, Laila; ari, Ahmad Hasan As'; Kusumaatmaja, Ahmad; Rianjanu, Aditya; Roto, Roto; Wasisto, Hutomo Suryo; Triyana, Kuwat
Maltodextrin-overlaid polyvinyl acetate nanofibers for highly sensitive and selective room-temperature ammonia sensors Journal Article
In: Microchemical Journal, pp. 109237, 2023.
Abstract | Links | BibTeX | Tags: 10 MHz, Ammonia, Nanofibers, openQCM sensors, Polyvinyl acetate, QCM, Quartz Crystal Microbalance
@article{aflaha2023maltodextrin,
title = {Maltodextrin-overlaid polyvinyl acetate nanofibers for highly sensitive and selective room-temperature ammonia sensors},
author = {Rizky Aflaha and Nur Laili Indah Sari and Laila Katriani and Ahmad Hasan As' ari and Ahmad Kusumaatmaja and Aditya Rianjanu and Roto Roto and Hutomo Suryo Wasisto and Kuwat Triyana},
url = {https://www.sciencedirect.com/science/article/abs/pii/S0026265X23008561},
doi = {https://doi.org/10.1016/j.microc.2023.109237},
year = {2023},
date = {2023-10-01},
urldate = {2023-10-01},
journal = {Microchemical Journal},
pages = {109237},
publisher = {Elsevier},
abstract = {Various ammonia sensors based on different materials have continuously been developed and employed to enable real-time monitoring of ammonia gas in the environment. Efforts are put not only to improve their sensitivity and selectivity towards the target gas but also to operate them at room temperature. Here, we investigated the effect of overlaying maltodextrin with different concentrations on the surface of polyvinyl acetate (PVAc) nanofibers on ammonia sensing performances, in which quartz crystal microbalance (QCM) was utilized as a transducer to measure the resonance frequency shift affected by the adsorbed gas molecules. Higher concentrations of the overlaying maltodextrin led to larger nanofiber diameter and more functional active groups on the active nanofibrous layers. PVAc nanofibers with 0.05% maltodextrin overlay demonstrated the highest sensitivity of 0.525 Hz·ppm−1 at room temperature, which was 6.4 times higher than their bare counterpart (nanofiber without maltodextrin overlay). That sensor also possessed fast response and recovery times of 32 s and 17 s with a low detection limit (1.92 ppm). Besides its high reproducibility, reversibility, and repeatability, the sensor exhibited outstanding selectivity to other gas analytes and good long-term stability for 32 days of testing. This research shows that maltodextrin overlay can be used as a low-cost alternative route to increase the performance of organic material-based ammonia sensors, especially polymer nanofibers.},
key = {QCM, 10 MHz, QCM sensors, polyvinyl acetate, nanofibers, ammonia},
keywords = {10 MHz, Ammonia, Nanofibers, openQCM sensors, Polyvinyl acetate, QCM, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {article}
}
Aflaha, Rizky; Katriani, Laila; ari, Ahmad Hasan As’; Sari, Nur Laili Indah; Kusumaatmaja, Ahmad; Rianjanu, Aditya; Roto, Roto; Triyana, Kuwat
Enhanced trimethylamine gas sensor sensitivity based on quartz crystal microbalance using nanofibers overlaid with maltodextrin Journal Article
In: MRS Communications, pp. 1–9, 2023.
Abstract | Links | BibTeX | Tags: openQCM, openQCM sensors, QCM, Quartz Crystal Microbalance
@article{aflaha2023enhanced,
title = {Enhanced trimethylamine gas sensor sensitivity based on quartz crystal microbalance using nanofibers overlaid with maltodextrin},
author = {Rizky Aflaha and Laila Katriani and Ahmad Hasan As’ ari and Nur Laili Indah Sari and Ahmad Kusumaatmaja and Aditya Rianjanu and Roto Roto and Kuwat Triyana},
url = {https://link.springer.com/article/10.1557/s43579-023-00409-3},
doi = {https://doi.org/10.1557/s43579-023-00409-3},
year = {2023},
date = {2023-08-03},
urldate = {2023-08-03},
journal = {MRS Communications},
pages = {1--9},
publisher = {Springer},
abstract = {This study proposes a novel quartz crystal microbalance-based sensor using polyvinyl acetate nanofibers overlaid with maltodextrin to enhance sensitivity toward trimethylamine (TMA) gas. The sensor demonstrated a remarkable increase in sensitivity by 8.3 times, with a detection limit of 15.6 ppm. The enhanced sensitivity is due to reversible intermolecular Lewis acid–base interaction between active groups of maltodextrin and TMA gas molecules. Moreover, the sensor exhibited good selectivity, stability, and fast response and recovery times of 141 s and 116 s, respectively. The proposed sensor offers a promising alternative to conventional methods for accurately monitoring TMA gas levels in the air.},
key = {openqCM, QCM , quartz Crystal Microbalance openQCM sensors},
keywords = {openQCM, openQCM sensors, QCM, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {article}
}
Sukowati, Riris; Rohman, Yadi Mulyadi; Agung, Bertolomeus Haryanto; Hapidin, Dian Ahmad; Damayanti, Herlina; Khairurrijal, Khairurrijal
In: Sensors and Actuators B: Chemical, vol. 386, pp. 133708, 2023.
Abstract | Links | BibTeX | Tags: ethanol vapor, Nanofibers, openQCM Wi2, polyvinylpyrrolidone, QCM, Quartz Crystal Microbalance
@article{Sukowati_Rohman_Agung_Hapidin_Damayanti_Khairurrijal_2023,
title = {An investigation of the influence of nanofibers morphology on the performance of QCM-based ethanol vapor sensor utilizing polyvinylpyrrolidone nanofibers active layer},
author = {Riris Sukowati and Yadi Mulyadi Rohman and Bertolomeus Haryanto Agung and Dian Ahmad Hapidin and Herlina Damayanti and Khairurrijal Khairurrijal},
url = {https://www.sciencedirect.com/science/article/abs/pii/S0925400523004239},
doi = {10.1016/j.snb.2023.133708},
year = {2023},
date = {2023-07-01},
urldate = {2023-07-01},
journal = {Sensors and Actuators B: Chemical},
volume = {386},
pages = {133708},
abstract = {Quartz crystal microbalances (QCMs) coated by polyvinylpyrrolidone (PVP) nanofibers with controlled morphology have been made for ethanol vapor detection. We used electrospinning to deposit PVP nanofibers of different morphologies (spherical-beaded, spindle-beaded, and pure nanofiber) on a QCM surface to study the effect on sensor performance. BET characterization revealed that the spherical-beaded nanofiber had the highest BET-specific surface area than the other morphologies, which improves the QCM sensor sensitivity, limit of quantification (LOQ), limit of detection (LOD), and sensor response. QCM coated with spherical-beaded nanofiber showed improved sensitivity of 2.632 Hz/ppm, lower LOD and LOQ of 0.018 ppm and 0.061 ppm, and better response compared to those coated with spindle-beaded and pure nanofiber. Based on adsorption isotherm models, Freundlich adsorption isotherm was found to be the most suitable for describing ethanol vapor adsorption on the sensor. The high sensitivity of the sensor to ethanol vapor was attributed to hydrogen bonding interactions between the sensor and the ethanol molecules. This study shows that the QCM-based sensor performance can be improved by modifying the morphology of nanofibrous coating layer.},
key = {QCM, Quartz Crystal Microbalance, openQCM Wi2, polyvinylpyrrolidone, nanofibers, ethanol vapor},
keywords = {ethanol vapor, Nanofibers, openQCM Wi2, polyvinylpyrrolidone, QCM, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {article}
}
Wang, Xinati; Lamantia, Angelo; Jay, Michael; Sadeghi, Hatef; Lambert, Colin J; Kolosov, Oleg V; Robinson, Benjamin
Determination of electric and thermoelectric properties of molecular junctions by AFM in peak force tapping mode Journal Article
In: Nanotechnology, 2023.
Abstract | Links | BibTeX | Tags: Functional Theory (DFT) Calculations, Molecular Thin Films, openQCM, openQCM Q-1, QCM, QCM-D, Self-Assembled Monolayers (SAMs)
@article{wang2023determination,
title = {Determination of electric and thermoelectric properties of molecular junctions by AFM in peak force tapping mode},
author = {Xinati Wang and Angelo Lamantia and Michael Jay and Hatef Sadeghi and Colin J Lambert and Oleg V Kolosov and Benjamin Robinson},
url = {https://iopscience.iop.org/article/10.1088/1361-6528/acdf67/meta},
doi = {https://doi.org/10.1088/1361-6528/acdf67},
year = {2023},
date = {2023-06-19},
urldate = {2023-06-19},
journal = {Nanotechnology},
abstract = {Molecular thin films, such as self-assembled monolayers (SAMs), offer the possibility of translating the optimised thermophysical and electrical properties of high-Seebeck-coefficient single molecules to scalable device architectures. However, for many scanning probe-based approaches attempting to characterise such SAMs, there remains a significant challenge in recovering single-molecule equivalent values from large-area films due to the intrinsic uncertainty of the probe-sample contact area coupled with film damage caused by contact forces. Here we report a new reproducible non-destructive method for probing the electrical and thermoelectric properties of small assemblies (10 – 103) of thiol-terminated molecules arranged within a SAM on a gold surface, and demonstrate the successful and reproducible measurements of the equivalent single-molecule electrical conductivity and Seebeck values. We have used a modified thermal-electric force microscopy (TEFM) approach, which integrates the conductive-probe atomic force microscope, a sample positioned on a temperature-controlled heater, and a probe-sample peak-force feedback that interactively limits the normal force across the molecular junctions. The experimental results are interpreted by density functional theory calculations allowing quantification the electrical quantum transport properties of both single molecules and small clusters of molecules. Significantly, this approach effectively eliminates lateral forces between probe and sample, minimising disruption to the SAM while enabling simultaneous mapping of the SAMs nanomechanical properties, as well as electrical and/or thermoelectric response, thereby allowing correlation of the film properties.},
keywords = {Functional Theory (DFT) Calculations, Molecular Thin Films, openQCM, openQCM Q-1, QCM, QCM-D, Self-Assembled Monolayers (SAMs)},
pubstate = {published},
tppubtype = {article}
}
Liu, Qiangqiang; Yang, Hua; Chen, Jiankui; Yin, Zhouping
Multi-Frame Super Resolution with Dual Pyramid Multi-Attention Network for Droplet Measurement Journal Article
In: IEEE Transactions on Instrumentation and Measurement, 2023.
Abstract | Links | BibTeX | Tags: Convolution, droplet, Feature extraction, Image restoration, openQCM, QCM, sensors, Superresolution
@article{liu2023multi,
title = {Multi-Frame Super Resolution with Dual Pyramid Multi-Attention Network for Droplet Measurement},
author = {Qiangqiang Liu and Hua Yang and Jiankui Chen and Zhouping Yin},
url = {https://ieeexplore.ieee.org/document/10155258},
doi = {https://doi.org/10.1109/TIM.2023.3287262},
year = {2023},
date = {2023-06-19},
urldate = {2023-06-19},
journal = {IEEE Transactions on Instrumentation and Measurement},
publisher = {IEEE},
abstract = {Accurate visual measurement of micrometer-scale flying droplets in inkjet printing remains a challenge due to low image resolution caused by severe image conditions. Multi-frame super resolution (MFSR) has the potential to break through the measurement bottleneck. However, most existing MFSR methods are not satisfactory in multi-frame information utilization, especially for fast-motion scenes, and they often suffer from detail loss. In this study, focusing on multi-frame information utilization and deep feature extraction, we propose a dual pyramid multi-attention network (DPMAN). First, a dual pyramid deformable alignment (DPDA) module is proposed to deal with diverse motion, which extracts explicit offsets to enhance deformable alignment and perform coarse-to-fine alignment. Then, a gated attention fusion (GAF) module is devised to adaptively aggregate the aligned features to emphasize favorable features. Finally, a residual self-attention reconstruction (RSAR) module based on the multi-stage aggregation self-attention architecture is proposed to extract finer deep features for detail restoration. Experimental results on three benchmark datasets demonstrate that DPMAN achieves state-of-the-art performance. DPMAN is applied to droplet image reconstruction and improves the measurement accuracy from 3.34% to 2.52%.},
keywords = {Convolution, droplet, Feature extraction, Image restoration, openQCM, QCM, sensors, Superresolution},
pubstate = {published},
tppubtype = {article}
}
Min, Hyun Jung; Mina, Hansel A; Deering, Amanda J; Rajwa, Bartek; Shin, Sungho; Doh, Iyll-Joon; Robinson, J Paul; Bae, Euiwon
Smartphone-based pathogen detection using concurrent monitoring of resonant frequency and optical fluorescence Proceedings Article
In: Sensing for Agriculture and Food Quality and Safety XV, pp. 81–87, SPIE 2023.
Abstract | Links | BibTeX | Tags: Fluorescence, Imaging, openQCM, QCM, Quartz Crystal Microbalance
@inproceedings{min2023smartphone,
title = {Smartphone-based pathogen detection using concurrent monitoring of resonant frequency and optical fluorescence},
author = {Hyun Jung Min and Hansel A Mina and Amanda J Deering and Bartek Rajwa and Sungho Shin and Iyll-Joon Doh and J Paul Robinson and Euiwon Bae},
url = {https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12545/125450A/Smartphone-based-pathogen-detection-using-concurrent-monitoring-of-resonant-frequency/10.1117/12.2665235.short?SSO=1},
doi = {https://doi.org/10.1117/12.2665235},
year = {2023},
date = {2023-06-13},
urldate = {2023-06-13},
booktitle = {Sensing for Agriculture and Food Quality and Safety XV},
volume = {12545},
pages = {81--87},
organization = {SPIE},
abstract = {Recently, the use of a Quartz Crystal Microbalance (QCM) as a biosensor for detecting foodborne pathogens by observing changes in resonant frequency has gained popularity. However, conventional detection methods are time-consuming and require expensive equipment and trained personnel. The current trend is toward detection approaches that are quick, portable, and easy to use. In order to address this need, a dual-modality QCM system combining a smartphone, an in-situ fluorescence imaging subsystem, and a flow injection component has been proposed. This system enables a smartphone to receive real-time frequency data via Bluetooth, while a camera detects the presence of bacteria on the quartz crystal surface using a fluorescence-tagged antibody. The fluorescence imaging subsystem utilizes a camera to capture the bacteria fluorescence signal, while the flow injection subsystem employs a mini peristaltic pump and controller to introduce biochemical solutions, antibodies, and bacteria. All components are contained in a 3D cartridge that is portable. FITC images were captured with 5 MHz quartz crystals when the prototype system was tested. The developed QCM biosensor has t},
keywords = {Fluorescence, Imaging, openQCM, QCM, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {inproceedings}
}
Ermek, Erhan; Ayan, Esra; Tokay, Nurettin; DeMirci, Hasan; Kepceoğlu, Abdullah
Electrospun biotin-and streptavidin-coated quartz crystal microbalance surfaces: characterization and mass sensing performance using OpenQCM Journal Article
In: 2023.
Abstract | Links | BibTeX | Tags: Biosensing, Biotin, Electrospinning, openQCM, QCM, Quartz Crystal Microbalance, Raman spectroscopy, Streptavidin, Surface coating
@article{ermek2023electrospun,
title = {Electrospun biotin-and streptavidin-coated quartz crystal microbalance surfaces: characterization and mass sensing performance using OpenQCM},
author = {Erhan Ermek and Esra Ayan and Nurettin Tokay and Hasan DeMirci and Abdullah Kepceoğlu},
url = {https://www.researchsquare.com/article/rs-2995721/v1},
doi = {https://doi.org/10.21203/rs.3.rs-2995721/v1},
year = {2023},
date = {2023-06-06},
urldate = {2023-06-06},
abstract = {In this study, a quartz crystal microbalance (QCM) sensor surface was coated with biotin and/or streptavidin using the electrospinning method. The coated surfaces were analyzed using the Raman spectroscopy method. QCM measurements were carried out using the OpenQCM platform. The results indicate that the electrospinning method can be used to coat QCM surfaces with biotin and/or streptavidin and that the coated surfaces exhibit distinct morphological and spectroscopic properties. The QCM measurements showed that the coated surfaces are highly sensitive to changes in mass, indicating their potential for use in biosensing applications. Overall, this study provides new insights into the use of QCM sensors coated with biotin and/or streptavidin for biological sensing and detection applications.},
keywords = {Biosensing, Biotin, Electrospinning, openQCM, QCM, Quartz Crystal Microbalance, Raman spectroscopy, Streptavidin, Surface coating},
pubstate = {published},
tppubtype = {article}
}
Malhotra, Jaskaran Singh; Kubus, Mariusz; Pedersen, Kasper Steen; Andersen, Simon Ivar; Sundberg, Jonas
Room-temperature monitoring of CH4 and CO2 using a metal-organic framework-based QCM sensor showing inherent analyte discrimination Journal Article
In: 2023.
Abstract | Links | BibTeX | Tags: carbon dioxide, CH4, CO2, Dissipation, metal-organic frameworks, methane, openQCM NEXT, QCM, QCM-D, Quartz Crystal Microbalance, sensors
@article{malhotra2023room,
title = {Room-temperature monitoring of CH4 and CO2 using a metal-organic framework-based QCM sensor showing inherent analyte discrimination},
author = {Jaskaran Singh Malhotra and Mariusz Kubus and Kasper Steen Pedersen and Simon Ivar Andersen and Jonas Sundberg},
url = {https://chemrxiv.org/engage/chemrxiv/article-details/646b938eccabde9f6e2fd280},
doi = {https://doi.org/10.26434/chemrxiv-2023-djhp2},
year = {2023},
date = {2023-05-24},
urldate = {2023-05-24},
abstract = {The detection of methane and carbon dioxide is of growing importance due to their negative impact on global warming. This is true both for environmental monitoring, as well as leak detection in industrial processes. Although solid-state sensors are technologically mature, they have limitations that prohibit their use in certain situations, e.g., explosive atmospheres. Thus, there is a need to develop new types of sensor materials. Herein, we demonstrate a simple, low-cost metal-organic framework-based gas leak detection sensor. The system is based on gravimetric sensing using a quartz crystal microbalance. The quartz crystal is functionalized by layer-by-layer growth of a thin metal-organic framework film. This film shows selective uptake of methane or carbon dioxide under atmospheric conditions. The hardware has low cost, simple operation, and theoretically high sensitivity. Overall, the sensor is characterized by simplicity and high robustness. Furthermore, by exploiting the different adsorption kinetics as measured by multiple harmonics analyses, it is possible to discriminate whether the response is due to methane or carbon dioxide. In summary, we demonstrate data relevant towards new applications of metal-organic frameworks and microporous hybrid materials in sensing applications.},
keywords = {carbon dioxide, CH4, CO2, Dissipation, metal-organic frameworks, methane, openQCM NEXT, QCM, QCM-D, Quartz Crystal Microbalance, sensors},
pubstate = {published},
tppubtype = {article}
}
Lino, Catarina; Barrias, Sara; Chaves, Raquel; Adega, Filomena; Fernandes, José Ramiro; Martins-Lopes, Paula
Development of a QCM-based biosensor for the detection of non-small cell lung cancer biomarkers in liquid biopsies Journal Article
In: Talanta, pp. 124624, 2023.
Abstract | Links | BibTeX | Tags: biosensors, blood plasma, Cancer, DNA, openQCM Q-1, QCM, Quartz Crystal Microbalance
@article{lino2023development,
title = {Development of a QCM-based biosensor for the detection of non-small cell lung cancer biomarkers in liquid biopsies},
author = {Catarina Lino and Sara Barrias and Raquel Chaves and Filomena Adega and José Ramiro Fernandes and Paula Martins-Lopes},
url = {https://www.sciencedirect.com/science/article/pii/S0039914023003752},
doi = {https://doi.org/10.1016/j.talanta.2023.124624},
year = {2023},
date = {2023-05-04},
urldate = {2023-05-04},
journal = {Talanta},
pages = {124624},
publisher = {Elsevier},
abstract = {Lung cancer is the main malignant cancer reported worldwide, with one of the lowest survival rates. Deletions in the Epidermal Growth Factor Receptor (EGFR) gene are often associated with non-small cell lung cancer (NSCLC), a common subtype of lung cancer. The detection of such mutations provides key information for the diagnosis and treatment of the disease; therefore, the early screening of such biomarkers is of vital importance. The need for fast, reliable, and early detection means applied to NSCLC has led to the development of highly sensitive devices that can detect cancer-associated mutations. Such devices, known as biosensors, are a promising alternative to more conventional detection methods and can potentially alter the way cancer is diagnosed and treated. In this study, we report the development of a DNA-based biosensor, namely a quartz crystal microbalance (QCM), applied to the detection of NSCLC, from liquid biopsies samples. The detection, as is the case of most DNA biosensors, is based on the hybridization between the NSCLC-specific probe and the sample DNA (containing specific mutations associated with NSCLC). The surface functionalization was performed with a blocking agent (dithiothreitol) and thiolated-ssDNA strands. The biosensor was able to detect specific DNA sequences in both synthetic and real samples. Aspects such as reutilization and regeneration of the QCM electrode were also studied.},
key = {QCM, Quartz Crystal Microbalance, openQCM Q-1, DNA, cancer, biosensor, blood plasma},
keywords = {biosensors, blood plasma, Cancer, DNA, openQCM Q-1, QCM, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {article}
}
Lim, Hui Jean; Saha, Tridib; Tey, Beng Ti; Lal, Sunil Kumar; Ooi, Chien Wei
In: Surfaces and Interfaces, pp. 102904, 2023.
Abstract | Links | BibTeX | Tags: molecularly imprinting, openQCM Q-1, polydopamine, proteins, QCM, Quartz Crystal Microbalance, sensing films
@article{lim2023quartz,
title = {Quartz crystal microbalance-based biosensing of proteins using molecularly imprinted polydopamine sensing films: Interplay between protein characteristics and molecular imprinting effect},
author = {Hui Jean Lim and Tridib Saha and Beng Ti Tey and Sunil Kumar Lal and Chien Wei Ooi},
url = {https://www.sciencedirect.com/science/article/abs/pii/S2468023023002742},
doi = {https://doi.org/10.1016/j.surfin.2023.102904},
year = {2023},
date = {2023-04-29},
urldate = {2023-04-29},
journal = {Surfaces and Interfaces},
pages = {102904},
publisher = {Elsevier},
abstract = {Biomimetic sensing films based on molecularly imprinted polydopamine (MIPDA) offer a simple, biocompatible, and versatile approach to functionalise quartz crystal microbalance (QCM)-based biosensors for the recognition of target proteins. This study aims to investigate the chemical, morphological, and recognition properties of MIPDA sensing films polymerised on the QCM crystal surface and elucidate the impacts of various parameters on the liquid-phase biosensing behaviour. Pepsin, bovine serum albumin, human serum albumin, and lysozyme were used as model proteins to study the effect of molecular imprinting and the influence of protein characteristics on the recognition behaviour of MIPDA-functionalised QCM crystals. Analysis of the protein adsorption patterns revealed that the MIPDA film contained heterogeneous binding sites with a dissociation constant in the µM range, showing that the binding affinity of the synthetic sensing film for the target protein was comparable to that of commonly used bioreceptors. In a case study using a pepsin-imprinted MIPDA film, the specific conformation and surface chemistry of the recognition cavities were discovered to promote the binding of pepsin (imprinting factor = 5.78) while simultaneously reducing the nonspecific binding of incompatible proteins on the QCM crystal surface. Protein recognition on MIPDA-functionalised QCM crystals was found to be governed by a combination of nonspecific interactions (e.g., electrostatic and polar interactions) between the proteins and the MIPDA sensing film. The findings indicate that increasing the density of selective recognition cavities in the MIPDA film and optimising the sample pH are key strategies to improve the selectivity and sensitivity for protein biosensing.},
keywords = {molecularly imprinting, openQCM Q-1, polydopamine, proteins, QCM, Quartz Crystal Microbalance, sensing films},
pubstate = {published},
tppubtype = {article}
}
Maity, Tanmoy; Malik, Pratibha; Bawari, Sumit; Ghosh, Soumya; Mondal, Jagannath; Haldar, Ritesh
Chemically routed interpore molecular diffusion in metal-organic framework thin films Journal Article
In: Nature Communications, vol. 14, no. 1, pp. 2212, 2023.
Abstract | Links | BibTeX | Tags: molecular diffusion, Nanoporous channels, openQCM NEXT, QCM, QCM-D, Quartz Crystal Microbalance
@article{maity2023chemically,
title = {Chemically routed interpore molecular diffusion in metal-organic framework thin films},
author = {Tanmoy Maity and Pratibha Malik and Sumit Bawari and Soumya Ghosh and Jagannath Mondal and Ritesh Haldar},
url = {https://pubmed.ncbi.nlm.nih.gov/37072404/},
doi = {https://doi.org/10.1038/s41467-023-37739-8},
year = {2023},
date = {2023-04-18},
urldate = {2023-04-18},
journal = {Nature Communications},
volume = {14},
number = {1},
pages = {2212},
publisher = {Nature Publishing Group UK London},
abstract = {Transport diffusivity of molecules in a porous solid is constricted by the rate at which molecules move from one pore to the other, along the concentration gradient, i.e. by following Fickian diffusion. In heterogeneous porous materials, i.e. in the presence of pores of different sizes and chemical environments, diffusion rate and directionality remain tricky to estimate and adjust. In such a porous system, we have realized that molecular diffusion direction can be orthogonal to the concentration gradient. To experimentally determine this complex diffusion rate dependency and get insight of the microscopic diffusion pathway, we have designed a model nanoporous structure, metal-organic framework (MOF). In this model two chemically and geometrically distinct pore windows are spatially oriented by an epitaxial, layer-by-layer growth method. The specific design of the nanoporous channels and quantitative mass uptake rate measurements have indicated that the mass uptake is governed by the interpore diffusion along the direction orthogonal to the concentration gradient. This revelation allows chemically carving the nanopores, and accelerating the interpore diffusion and kinetic diffusion selectivity.},
keywords = {molecular diffusion, Nanoporous channels, openQCM NEXT, QCM, QCM-D, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {article}
}
Rohman, Yadi Mulyadi; Sukowati, Riris; Priyanto, Aan; Hapidin, Dian Ahmad; Edikresnha, Dhewa; Khairurrijal, Khairurrijal
Quartz Crystal Microbalance Coated with Polyacrylonitrile/Nickel Nanofibers for High-Performance Methanol Gas Detection Journal Article
In: ACS Omega, 2023.
Abstract | Links | BibTeX | Tags: Alcohols, Nanofibers, nanoparticles, Nickel, openQCM Wi2, QCM, Quartz Crystal Microbalance, sensors
@article{rohman2023quartz,
title = {Quartz Crystal Microbalance Coated with Polyacrylonitrile/Nickel Nanofibers for High-Performance Methanol Gas Detection},
author = {Yadi Mulyadi Rohman and Riris Sukowati and Aan Priyanto and Dian Ahmad Hapidin and Dhewa Edikresnha and Khairurrijal Khairurrijal},
url = {https://pubs.acs.org/doi/full/10.1021/acsomega.3c00760},
doi = {https://doi.org/10.1021/acsomega.3c00760},
year = {2023},
date = {2023-03-29},
urldate = {2023-01-01},
journal = {ACS Omega},
publisher = {ACS Publications},
abstract = {This study describes a sensor based on quartz crystal microbalance (QCM) coated by polyacrylonitrile (PAN) nanofibers containing nickel nanoparticles for methanol gas detection. The PAN/nickel nanofibers composites were made via electrospinning and electrospray methods. The QCM sensors coated with the PAN/nickel nanofiber composite were evaluated for their sensitivities, selectivities, and stabilities. The morphologies and elemental compositions of the sensors were examined using a scanning electron microscope-energy dispersive X-ray. A Fourier Transform Infrared spectrometer was used to investigate the elemental bonds within the nanofiber composites. The QCM sensors coated with PAN/nickel nanofibers offered a high specific surface area to enhance the QCM sensing performance. They exhibited excellent sensing characteristics, including a high sensitivity of 389.8 ± 3.8 Hz/SCCM, response and recovery times of 288 and 251 s, respectively, high selectivity for methanol compared to other gases, a limit of detection (LOD) of about 1.347 SCCM, and good long-term stability. The mechanism of methanol gas adsorption by the PAN/nickel nanofibers can be attributed to intermolecular interactions, such as the Lewis acid–base reaction by PAN nanofibers and hydrogen bonding by nickel nanoparticles. The results suggest that QCM-coated PAN/nickel nanofiber composites show great potential for the design of highly sensitive and selective methanol gas sensors.},
key = {Alcohols,Nanofibers,Nanoparticles,Nickel,Sensors},
keywords = {Alcohols, Nanofibers, nanoparticles, Nickel, openQCM Wi2, QCM, Quartz Crystal Microbalance, sensors},
pubstate = {published},
tppubtype = {article}
}
Qi, Shaojun; Kiratzis, Ioannis; Adoni, Pavan; Tuekprakhon, Aekkachai; Hill, Harriet James; Stamataki, Zania; Nabi, Aneesa; Waugh, David; Rodriguez, Javier Rodriguez; Clarke, Stuart Matthew; others,
Porous Cellulose Thin Films as Sustainable and Effective Antimicrobial Surface Coatings Journal Article
In: ACS Applied Materials & Interfaces, 2023.
Abstract | Links | BibTeX | Tags: antimicrobial, cellulose, evaporation, film, openQCM NEXT, QCM, QCM-D, Quartz Crystal Microbalance, robustness, SARS-CoV-2
@article{qi2023porous,
title = {Porous Cellulose Thin Films as Sustainable and Effective Antimicrobial Surface Coatings},
author = {Shaojun Qi and Ioannis Kiratzis and Pavan Adoni and Aekkachai Tuekprakhon and Harriet James Hill and Zania Stamataki and Aneesa Nabi and David Waugh and Javier Rodriguez Rodriguez and Stuart Matthew Clarke and others},
url = {https://pubs.acs.org/doi/full/10.1021/acsami.2c23251},
doi = {https://doi.org/10.1021/acsami.2c23251},
year = {2023},
date = {2023-03-29},
urldate = {2023-01-01},
journal = {ACS Applied Materials & Interfaces},
publisher = {ACS Publications},
abstract = {In the present work, we developed an effective antimicrobial surface film based on sustainable microfibrillated cellulose. The resulting porous cellulose thin film is barely noticeable to human eyes due to its submicrometer thickness, of which the surface coverage, porosity, and microstructure can be modulated by the formulations and the coating process. Using goniometers and a quartz crystal microbalance, we observed a threefold reduction in water contact angles and accelerated water evaporation kinetics on the cellulose film (more than 50% faster than that on a flat glass surface). The porous cellulose film exhibits a rapid inactivation effect against SARS-CoV-2 in 5 min, following deposition of virus-loaded droplets, and an exceptional ability to reduce contact transfer of liquid, e.g., respiratory droplets, to surfaces such as an artificial skin by 90% less than that from a planar glass substrate. It also shows excellent antimicrobial performance in inhibiting the growth of both Gram-negative and Gram-positive bacteria (Escherichia coli and Staphylococcus epidermidis) due to the intrinsic porosity and hydrophilicity. Additionally, the cellulose film shows nearly 100% resistance to scraping in dry conditions due to its strong affinity to the supporting substrate but with good removability once wetted with water, suggesting its practical suitability for daily use. Importantly, the coating can be formed on solid substrates readily by spraying, which requires solely a simple formulation of a plant-based cellulose material with no chemical additives, rendering it a scalable, affordable, and green solution as antimicrobial surface coating. Implementing such cellulose films could thus play a significant role in controlling future pan- and epidemics, particularly during the initial phase when suitable medical intervention needs to be developed and deployed.},
key = {cellulose, film, antimicrobial, evaporation, SARS-CoV-2, robustness},
keywords = {antimicrobial, cellulose, evaporation, film, openQCM NEXT, QCM, QCM-D, Quartz Crystal Microbalance, robustness, SARS-CoV-2},
pubstate = {published},
tppubtype = {article}
}
Bulut, Aliye; Temur, Betul Z; Kirimli, Ceyhun E; Gok, Ozgul; Balcioglu, Bertan K; Ozturk, Hasan U; Uyar, Neval Y; Kanlidere, Zeynep; Kocagoz, Tanil; Can, Ozge
A Novel Peptide-Based Detection of SARS-CoV-2 Antibodies Journal Article
In: Biomimetics, vol. 8, no. 1, pp. 89, 2023.
Abstract | Links | BibTeX | Tags: antibody detection, biosensors, peptide mimetics, QCM, Quartz Crystal Microbalance, SARS-CoV-2
@article{bulut2023novel,
title = {A Novel Peptide-Based Detection of SARS-CoV-2 Antibodies},
author = {Aliye Bulut and Betul Z Temur and Ceyhun E Kirimli and Ozgul Gok and Bertan K Balcioglu and Hasan U Ozturk and Neval Y Uyar and Zeynep Kanlidere and Tanil Kocagoz and Ozge Can},
url = {https://www.mdpi.com/2313-7673/8/1/89},
doi = {https://doi.org/10.3390/biomimetics8010089},
year = {2023},
date = {2023-02-22},
urldate = {2023-02-22},
journal = {Biomimetics},
volume = {8},
number = {1},
pages = {89},
publisher = {MDPI},
abstract = {The need for rapidly developed diagnostic tests has gained significant attention after the recent pandemic. Production of neutralizing antibodies for vaccine development or antibodies to be used in diagnostic tests usually require the usage of recombinant proteins representing the infectious agent. However, peptides that can mimic these recombinant proteins may be rapidly utilized, especially in emergencies such as the recent outbreak. Here, we report two peptides that mimic the receptor binding domain of the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and investigate their binding behavior against the corresponding human immunoglobulin G and immunoglobulin M (IgG and IgM) antibodies in a clinical sample using a quartz crystal microbalance (QCM) sensor. These peptides were immobilized on a QCM sensor surface, and their binding behavior was studied against a clinical serum sample that was previously determined to be IgG and IgM-positive. It was determined that designed peptides bind to SARS-CoV-2 antibodies in a clinical sample. These peptides might be useful for the detection of SARS-CoV-2 antibodies using different methods such as enzyme-linked immunosorbent assay (ELISA) or lateral flow assays. A similar platform might prove to be useful for the detection and development of antibodies in other infections.},
key = {peptide mimetics, SARS-CoV-2, biosensor, quartz crystal microbalance, antibody detection},
keywords = {antibody detection, biosensors, peptide mimetics, QCM, Quartz Crystal Microbalance, SARS-CoV-2},
pubstate = {published},
tppubtype = {article}
}
Brotherton, Emma E; Johnson, Edwin C; Smallridge, Mark J; Hammond, Deborah B; Leggett, Graham J; Armes, Steven P
Hydrophilic Aldehyde-Functional Polymer Brushes: Synthesis, Characterization, and Potential Bioapplications Journal Article
In: Macromolecules, 2023.
Abstract | Links | BibTeX | Tags: Functionalization, Monomers, peptides, proteins, QCM, Thickness, X-ray, X-ray photoelectron spectroscopy
@article{brotherton2023hydrophilic,
title = {Hydrophilic Aldehyde-Functional Polymer Brushes: Synthesis, Characterization, and Potential Bioapplications},
author = {Emma E Brotherton and Edwin C Johnson and Mark J Smallridge and Deborah B Hammond and Graham J Leggett and Steven P Armes},
url = {https://pubs.acs.org/doi/full/10.1021/acs.macromol.2c02471},
doi = {https://doi.org/10.1021/acs.macromol.2c02471},
year = {2023},
date = {2023-02-22},
urldate = {2023-01-01},
journal = {Macromolecules},
publisher = {ACS Publications},
abstract = {Surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) is used to polymerize a cis-diol-functional methacrylic monomer (herein denoted GEO5MA) from planar silicon wafers. Ellipsometry studies indicated dry brush thicknesses ranging from 40 to 120 nm. The hydrophilic PGEO5MA brush is then selectively oxidized using sodium periodate to produce an aldehyde-functional hydrophilic PAGEO5MA brush. This post-polymerization modification strategy provides access to significantly thicker brushes compared to those obtained by surface-initiated ARGET ATRP of the corresponding aldehyde-functional methacrylic monomer (AGEO5MA). The much slower brush growth achieved in the latter case is attributed to the relatively low aqueous solubility of the AGEO5MA monomer. X-ray photoelectron spectroscopy (XPS) analysis confirmed that precursor PGEO5MA brushes were essentially fully oxidized to the corresponding PAGEO5MA brushes within 30 min of exposure to a dilute aqueous solution of sodium periodate at 22 °C. PAGEO5MA brushes were then functionalized via Schiff base chemistry using an amino acid (histidine), followed by reductive amination with sodium cyanoborohydride. Subsequent XPS analysis indicated that the mean degree of histidine functionalization achieved under optimized conditions was approximately 81%. Moreover, an XPS depth profiling experiment confirmed that the histidine groups were uniformly distributed throughout the brush layer. Surface ζ potential measurements indicated a significant change in the electrophoretic behavior of the zwitterionic histidine-functionalized brush relative to that of the non-ionic PGEO5MA precursor brush. The former brush exhibited cationic character at low pH and anionic character at high pH, with an isoelectric point being observed at around pH 7. Finally, quartz crystal microbalance studies indicated minimal adsorption of a model globular protein (BSA) on a PGEO5MA brush-coated substrate, whereas strong protein adsorption via Schiff base chemistry occurred on a PAGEO5MA brush-coated substrate.},
key = {Functionalization,Monomers,Peptides and proteins,Thickness,X-ray photoelectron spectroscopy},
keywords = {Functionalization, Monomers, peptides, proteins, QCM, Thickness, X-ray, X-ray photoelectron spectroscopy},
pubstate = {published},
tppubtype = {article}
}
Hajizadehmotlagh, Mandana; Fahimi, Dorsa; Singhal, Anuj; Paprotny, Igor
Wearable Resonator-Based Respirable Dust Monitor for Underground Coal Mines Journal Article
In: IEEE Sensors Journal, vol. 23, no. 7, pp. 6680–6687, 2023.
Links | BibTeX | Tags: Airborne, Diesel Exhaust, Dust, gravimetry, openQCM, QCM, Quartz Crystal Microbalance, Respirable Coal Dust
@article{hajizadehmotlagh2023wearable,
title = {Wearable Resonator-Based Respirable Dust Monitor for Underground Coal Mines},
author = {Mandana Hajizadehmotlagh and Dorsa Fahimi and Anuj Singhal and Igor Paprotny},
url = {https://ieeexplore.ieee.org/abstract/document/10047920},
doi = {https://doi.org/10.1109/JSEN.2023.3241601},
year = {2023},
date = {2023-02-16},
urldate = {2023-02-16},
journal = {IEEE Sensors Journal},
volume = {23},
number = {7},
pages = {6680--6687},
publisher = {IEEE},
keywords = {Airborne, Diesel Exhaust, Dust, gravimetry, openQCM, QCM, Quartz Crystal Microbalance, Respirable Coal Dust},
pubstate = {published},
tppubtype = {article}
}
Massera, Ettore; Barretta, Luigi; Miglietta, Maria Lucia; Alfano, Brigida; Polichetti, Tiziana
Quartz Crystal Microbalance Study in Controlled Environment for Particulate Matter Sensing Book Section
In: Sensors and Microsystems: Proceedings of AISEM 2022, pp. 129–134, Springer, 2023.
Abstract | Links | BibTeX | Tags: air quality, environment, graphene, pollution, QCM, Quartz Crystal Microbalance
@incollection{massera2023quartz,
title = {Quartz Crystal Microbalance Study in Controlled Environment for Particulate Matter Sensing},
author = {Ettore Massera and Luigi Barretta and Maria Lucia Miglietta and Brigida Alfano and Tiziana Polichetti},
url = {https://link.springer.com/chapter/10.1007/978-3-031-25706-3_21},
doi = {https://doi.org/10.1007/978-3-031-25706-3_21},
year = {2023},
date = {2023-02-02},
urldate = {2023-01-01},
booktitle = {Sensors and Microsystems: Proceedings of AISEM 2022},
pages = {129--134},
publisher = {Springer},
abstract = {Today, air quality sensors miniaturization is a trending topic for industry research. Market demand for wearable devices with “internet of things” capabilities has exponential growth. Particulate matter sensors in consumer electronics are all based on the optical particles counter mechanism and are always too bulky. As an interesting alternative we propose a study on a commercial quartz crystal microbalance showing the correlation between its electronic features and the measurement of the particulate matter present in the air with a reference instrument. We also present preliminary measurements for a quartz crystal microbalance which surface is covered by a layer of graphene nanoplatelets making a comparison with the pristine one.},
key = {QCM, Quartz Crystal Microbalance, Sensor, pollution, air quality, graphene},
keywords = {air quality, environment, graphene, pollution, QCM, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {incollection}
}
Hosseini, MS; Vossoughi, M; Hosseini, M; others,
L-lysine biodetector based on a TOCNFs-coated Quartz Crystal Microbalance (QCM) Journal Article
In: European Polymer Journal, pp. 111831, 2023.
Links | BibTeX | Tags: biodetector, glycine (Gly), L-leucine (Leu), L-lysine (Lys), QCM, TEMPO-Oxidized Cellulose Nanofibril (TOCNF)
@article{hosseini2023lysine,
title = {L-lysine biodetector based on a TOCNFs-coated Quartz Crystal Microbalance (QCM)},
author = {MS Hosseini and M Vossoughi and M Hosseini and others},
url = {https://www.sciencedirect.com/science/article/abs/pii/S0014305723000149},
doi = {https://doi.org/10.1016/j.eurpolymj.2023.111831},
year = {2023},
date = {2023-01-18},
urldate = {2023-01-18},
journal = {European Polymer Journal},
pages = {111831},
publisher = {Elsevier},
keywords = {biodetector, glycine (Gly), L-leucine (Leu), L-lysine (Lys), QCM, TEMPO-Oxidized Cellulose Nanofibril (TOCNF)},
pubstate = {published},
tppubtype = {article}
}
Lai, Hy K
Lamar University-Beaumont, 2023.
Abstract | Links | BibTeX | Tags: Alzheimer, openQCM, Polyphenols, QCM
@phdthesis{lai2023evaluation,
title = {Evaluation of Natural Polyphenols for Anti-Aggregation and Potential Neuroprotection Against Beta-Amyloid, in Vitro},
author = {Hy K Lai},
url = {https://www.proquest.com/openview/8f7abb9443acf3e32d9a153907a21885/1?pq-origsite=gscholar&cbl=18750&diss=y},
year = {2023},
date = {2023-01-01},
urldate = {2023-01-01},
school = {Lamar University-Beaumont},
abstract = {Alzheimer’s disease, a multifaceted neurodegenerative disorder, was the seventh leading cause of death at 5.8 million deaths in 2021 for all ages, with projections indicating a nearly threefold increase by 2060. The current treatment paradigm primarily involves behavioral management while attempting to alleviate symptoms, with limited focus on addressing the underlying pathogenesis: the formation and deposition of β- amyloid. Given the expected surge in Alzheimer’s disease cases in the coming decades, the quest for dietary and nutraceutical solutions as lifelong preventive measures becomes increasingly critical. This dissertation presents a comprehensive investigation into the neuroprotective potential of four prominent polyphenolic compounds: colominic acid, resveratrol, luteolin, and isosilybin. These compounds, found naturally in various plant sources, have drawn increasing attention for their potential to mitigate Alzheimer's disease and its associated cognitive impairments. The evaluation scheme starts with a toxicity assessment of each compound, followed by an investigation into their interactions with Aβ monomer and oligomers, and finally categorization of their neuroprotective mechanisms. The findings were mainly quantified using MTT viability in
vitro assay and were validated with Congo Red and flow cytometry analysis. Moreover, the protocol developed herein provides a repeatable and comparable assessment for potential confounders to attenuate Aβ-induced toxicity of Alzheimer’s disease. These insights are vital for shaping future therapeutic strategies and prevention approaches, reinforcing the potential of natural compounds as a significant avenue in advancing our understanding and approach to Alzheimer's disease.},
keywords = {Alzheimer, openQCM, Polyphenols, QCM},
pubstate = {published},
tppubtype = {phdthesis}
}
Brotherton, Emma E; Josland, Daniel; Gyorgy, Csilla; Johnson, Edwin C; Chan, Derek HH; Smallridge, Mark J; Armes, Steven P
Histidine-Functionalized Diblock Copolymer Nanoparticles Exhibit Enhanced Adsorption onto Planar Stainless Steel Journal Article
In: Macromolecular Rapid Communications, pp. 2200903, 2022.
Abstract | Links | BibTeX | Tags: Histidine-Functionalized, nanoparticles, polymerization, QCM
@article{brotherton2022histidine,
title = {Histidine-Functionalized Diblock Copolymer Nanoparticles Exhibit Enhanced Adsorption onto Planar Stainless Steel},
author = {Emma E Brotherton and Daniel Josland and Csilla Gyorgy and Edwin C Johnson and Derek HH Chan and Mark J Smallridge and Steven P Armes},
url = {https://onlinelibrary.wiley.com/doi/10.1002/marc.202200903},
doi = {https://doi.org/10.1002/marc.202200903},
year = {2022},
date = {2022-12-19},
urldate = {2022-01-01},
journal = {Macromolecular Rapid Communications},
pages = {2200903},
publisher = {Wiley Online Library},
abstract = {RAFT aqueous emulsion polymerization of isopropylideneglycerol monomethacrylate (IPGMA) is used to prepare a series of PGEO5MA46-PIPGMAy nanoparticles, where PGEO5MA is a hydrophilic methacrylic steric stabilizer block bearing pendent cis-diol groups. TEM studies confirmed that well-defined spherical nanoparticles were obtained while DLS analysis indicated that the z-average particle diameter could be adjusted from 68 nm to 188 nm by systematically varying the target degree of polymerization for the core-forming PIPGMA block. Sodium periodate was employed as a selective oxidant to convert the cis-diol groups on PGEO5MA46-PIPGMA500 and PGEO5MA46-PIPGMA1000 nanoparticles into the analogous aldehyde-functionalized nanoparticles, which were then reacted with histidine via reductive amination. In each case, the extent of functionalization was more than 99% as judged by 1H NMR spectroscopy. Moreover, aqueous electrophoresis studies indicated that such derivatization converted initially neutral nanoparticles into nanoparticles that exhibit an isoelectric point (IEP) at around pH 7. Interestingly, DLS studies confirmed that such histidine-derivatized nanoparticles remained colloidally stable over a wide pH range, with no sign of any aggregation at around the IEP. A quartz crystal microbalance (QCM) was employed at 25 °C to assess the extent of adsorption of both the cis-diol- and histidine-functionalized nanoparticles onto a planar stainless steel substrate at pH 6. The histidine-bearing nanoparticles adsorbed much more strongly than their cis-diol counterparts. For the highest adsorbed amount of 70.5 mg m-2, the adsorbed layer of nanoparticles was examined by SEM, which enabled a fractional surface coverage of 0.23 to be estimated via digital image analysis.},
key = {Histidine-Functionalized, QCM, nanoparticles, polymerization},
keywords = {Histidine-Functionalized, nanoparticles, polymerization, QCM},
pubstate = {published},
tppubtype = {article}
}
openQCM – Powered by Novaetech S.r.l