openQCM – Powered by Novaetech S.r.l
Publications citing the applications of openQCM (by Novaetech S.r.l.) instruments and accessories in scientific research.
The list of scientific papers published on the most important journals showing the usage of openQCM in several scientific fields, such as thin film deposition, chemical sensors, biological research and biosensors.
Because of the large number of publications, we are reorganizing everything by subject areas. This will take some time. Thank you for your patience
Buksa, Hubert; Johnson, Edwin C; Chan, Derek HH; McBride, Rory J; Sanderson, George; Corrigan, Rebecca M; Armes, Steven P
Arginine-Functional Methacrylic Block Copolymer Nanoparticles: Synthesis, Characterization, and Adsorption onto a Model Planar Substrate Journal Article
In: Biomacromolecules, 2024.
Abstract | Links | BibTeX | Tags: aldehyde-functional, nanoparticles, openQCM NEXT, polymers, QCM, QCM-D, Quartz Crystal Microbalance
@article{buksa2024arginine,
title = {Arginine-Functional Methacrylic Block Copolymer Nanoparticles: Synthesis, Characterization, and Adsorption onto a Model Planar Substrate},
author = {Hubert Buksa and Edwin C Johnson and Derek HH Chan and Rory J McBride and George Sanderson and Rebecca M Corrigan and Steven P Armes},
url = {https://pubs.acs.org/doi/10.1021/acs.biomac.4c00128?goto=supporting-info},
doi = {https://pubs.acs.org/doi/10.1021/acs.biomac.4c00128?goto=supporting-info},
year = {2024},
date = {2024-05-02},
urldate = {2024-05-02},
journal = {Biomacromolecules},
publisher = {ACS Publications},
abstract = {Recently, we reported the synthesis of a hydrophilic aldehyde-functional methacrylic polymer (Angew. Chem., 2021, 60, 12032–12037). Herein we demonstrate that such polymers can be reacted with arginine in aqueous solution to produce arginine-functional methacrylic polymers without recourse to protecting group chemistry. Careful control of the solution pH is essential to ensure regioselective imine bond formation; subsequent reductive amination leads to a hydrolytically stable amide linkage. This new protocol was used to prepare a series of arginine-functionalized diblock copolymer nanoparticles of varying size via polymerization-induced self-assembly in aqueous media. Adsorption of these cationic nanoparticles onto silica was monitored using a quartz crystal microbalance. Strong electrostatic adsorption occurred at pH 7 (Γ = 14.7 mg m–2), whereas much weaker adsorption occurred at pH 3 (Γ = 1.9 mg m–2). These findings were corroborated by electron microscopy, which indicated a surface coverage of 42% at pH 7 but only 5% at pH 3},
keywords = {aldehyde-functional, nanoparticles, openQCM NEXT, polymers, QCM, QCM-D, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {article}
}
openQCM – Powered by Novaetech S.r.l