openQCM – Powered by Novaetech S.r.l
Publications citing the applications of openQCM (by Novaetech S.r.l.) instruments and accessories in scientific research.
The list of scientific papers published on the most important journals showing the usage of openQCM in several scientific fields, such as thin film deposition, chemical sensors, biological research and biosensors.
Because of the large number of publications, we are reorganizing everything by subject areas. This will take some time. Thank you for your patience
Maity, Tanmoy; Sarkar, Susmita; Kundu, Susmita; Panda, Suvendu; Sarkar, Arighna; Hammad, Raheel; Mandal, Kalyaneswar; Ghosh, Soumya; Mondal, Jagannath; Haldar, Ritesh
Steering diffusion selectivity of chemical isomers within aligned nanochannels of metal-organic framework thin film Journal Article
In: Nature Communications, vol. 15, no. 1, pp. 1–9, 2024.
Abstract | Links | BibTeX | Tags: chemical isomers, Diffusion Selectivity, metal-organic frameworks, Molecular Separation, Nano Channels, openQCM, QCM, Quartz Crystal Microbalance
@article{maity2024steering,
title = {Steering diffusion selectivity of chemical isomers within aligned nanochannels of metal-organic framework thin film},
author = {Tanmoy Maity and Susmita Sarkar and Susmita Kundu and Suvendu Panda and Arighna Sarkar and Raheel Hammad and Kalyaneswar Mandal and Soumya Ghosh and Jagannath Mondal and Ritesh Haldar},
url = {https://www.nature.com/articles/s41467-024-53207-3#citeas},
doi = {https://doi.org/10.1038/s41467-024-53207-3},
year = {2024},
date = {2024-11-08},
urldate = {2024-11-08},
journal = {Nature Communications},
volume = {15},
number = {1},
pages = {1--9},
publisher = {Nature Publishing Group},
abstract = {The movement of molecules (i.e. diffusion) within angstrom-scale pores of porous materials such as metal-organic frameworks (MOFs) and zeolites is influenced by multiple complex factors that can be challenging to assess and manipulate. Nevertheless, understanding and controlling this diffusion phenomenon is crucial for advancing energy-economic membrane-based chemical separation technologies, as well as for heterogeneous catalysis and sensing applications. Through precise assessment of the factors influencing diffusion within a porous metal-organic framework (MOF) thin film, we have developed a chemical strategy to manipulate and reverse chemical isomer diffusion selectivity. In the process of cognizing the molecular diffusion within oriented, angstrom-scale channels of MOF thin film, we have unveiled a dynamic chemical interaction between the adsorbate (chemical isomers) and the MOF using a combination of kinetic mass uptake experiments and molecular simulation. Leveraging the dynamic chemical interactions, we have reversed the haloalkane (positional) isomer diffusion selectivity, forging a chemical pathway to elevate the overall efficacy of membrane-based chemical separation and selective catalytic reactions.},
keywords = {chemical isomers, Diffusion Selectivity, metal-organic frameworks, Molecular Separation, Nano Channels, openQCM, QCM, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {article}
}
Malhotra, Jaskaran Singh; Reichert, Per Holger; Sundberg, Jonas
A Quartz Crystal Resonator Modified with a Metal-Organic Framework for Sensing of Benzene, Ethylbenzene, Toluene and Xylenes in Water Proceedings Article
In: 2023 IEEE SENSORS, pp. 1–4, IEEE 2023.
Abstract | Links | BibTeX | Tags: Adsorption, analyte discrimination, BTEX sensor, Harmonic analysis, metal-organic frameworks, openQCM, QCM, Resonant frequency, Sensitivity, sensors, Stability analysis
@inproceedings{malhotra2023quartz,
title = {A Quartz Crystal Resonator Modified with a Metal-Organic Framework for Sensing of Benzene, Ethylbenzene, Toluene and Xylenes in Water},
author = {Jaskaran Singh Malhotra and Per Holger Reichert and Jonas Sundberg},
url = {https://ieeexplore.ieee.org/abstract/document/10325196},
doi = {https://doi.org/10.1109/SENSORS56945.2023.10325196},
year = {2023},
date = {2023-11-28},
urldate = {2023-11-28},
booktitle = {2023 IEEE SENSORS},
pages = {1--4},
organization = {IEEE},
abstract = {This work describes the use of a quartz crystal microbalance (QCM) based sensor for gravimetric sensing of benzene, toluene, ethylbenzene, and xylenes (BTEX). A film of a Cu-based metal-organic framework (MOF) capable of BTEX adsorption is deposited on the gold electrode of a quartz resonator (10 MHz). The sensor is operated under constant flow of water, simultaneously measuring frequency shifts in multiple harmonics. Introduction of BTEX compounds in the water shifts the frequency, enabling detection. Analysis of deviation in the 3 rd and 5 th harmonics enables discrimination of response from either of the BTEX molecules. The response time further enables understanding of diffusion kinetics of each molecule into the framework.},
keywords = {Adsorption, analyte discrimination, BTEX sensor, Harmonic analysis, metal-organic frameworks, openQCM, QCM, Resonant frequency, Sensitivity, sensors, Stability analysis},
pubstate = {published},
tppubtype = {inproceedings}
}
Malhotra, Jaskaran Singh; Kubus, Mariusz; Pedersen, Kasper Steen; Andersen, Simon Ivar; Sundberg, Jonas
Room-temperature monitoring of CH4 and CO2 using a metal-organic framework-based QCM sensor showing inherent analyte discrimination Journal Article
In: 2023.
Abstract | Links | BibTeX | Tags: carbon dioxide, CH4, CO2, Dissipation, metal-organic frameworks, methane, openQCM NEXT, QCM, QCM-D, Quartz Crystal Microbalance, sensors
@article{malhotra2023room,
title = {Room-temperature monitoring of CH4 and CO2 using a metal-organic framework-based QCM sensor showing inherent analyte discrimination},
author = {Jaskaran Singh Malhotra and Mariusz Kubus and Kasper Steen Pedersen and Simon Ivar Andersen and Jonas Sundberg},
url = {https://chemrxiv.org/engage/chemrxiv/article-details/646b938eccabde9f6e2fd280},
doi = {https://doi.org/10.26434/chemrxiv-2023-djhp2},
year = {2023},
date = {2023-05-24},
urldate = {2023-05-24},
abstract = {The detection of methane and carbon dioxide is of growing importance due to their negative impact on global warming. This is true both for environmental monitoring, as well as leak detection in industrial processes. Although solid-state sensors are technologically mature, they have limitations that prohibit their use in certain situations, e.g., explosive atmospheres. Thus, there is a need to develop new types of sensor materials. Herein, we demonstrate a simple, low-cost metal-organic framework-based gas leak detection sensor. The system is based on gravimetric sensing using a quartz crystal microbalance. The quartz crystal is functionalized by layer-by-layer growth of a thin metal-organic framework film. This film shows selective uptake of methane or carbon dioxide under atmospheric conditions. The hardware has low cost, simple operation, and theoretically high sensitivity. Overall, the sensor is characterized by simplicity and high robustness. Furthermore, by exploiting the different adsorption kinetics as measured by multiple harmonics analyses, it is possible to discriminate whether the response is due to methane or carbon dioxide. In summary, we demonstrate data relevant towards new applications of metal-organic frameworks and microporous hybrid materials in sensing applications.},
keywords = {carbon dioxide, CH4, CO2, Dissipation, metal-organic frameworks, methane, openQCM NEXT, QCM, QCM-D, Quartz Crystal Microbalance, sensors},
pubstate = {published},
tppubtype = {article}
}
openQCM – Powered by Novaetech S.r.l