openQCM – Powered by Novaetech S.r.l
Publications citing the applications of openQCM (by Novaetech S.r.l.) instruments and accessories in scientific research.
The list of scientific papers published on the most important journals showing the usage of openQCM in several scientific fields, such as thin film deposition, chemical sensors, biological research and biosensors.
Because of the large number of publications, we are reorganizing everything by subject areas. This will take some time. Thank you for your patience
Hunter, Saul J; Csányi, Evelin; Tyler, Joshua JS; Newell, Mark A; Farmer, Matthew AH; Ma, Camery; Sanderson, George; Leggett, Graham J; Johnson, Edwin C; Armes, Steven P
Covalent Capture of Nanoparticle-Stabilized Oil Droplets via Acetal Chemistry Using a Hydrophilic Polymer Brush Journal Article
In: Langmuir, 2024.
Abstract | Links | BibTeX | Tags: Adsorption, lipids, Liquids, Nanoemulsions, nanoparticles, openQCM NEXT, QCM, QCM-D, Quartz Crystal Microbalance
@article{hunter2024covalent,
title = {Covalent Capture of Nanoparticle-Stabilized Oil Droplets via Acetal Chemistry Using a Hydrophilic Polymer Brush},
author = {Saul J Hunter and Evelin Csányi and Joshua JS Tyler and Mark A Newell and Matthew AH Farmer and Camery Ma and George Sanderson and Graham J Leggett and Edwin C Johnson and Steven P Armes},
url = {https://pubs.acs.org/doi/full/10.1021/acs.langmuir.4c03897},
doi = {https://doi.org/10.1021/acs.langmuir.4c03897},
year = {2024},
date = {2024-12-06},
urldate = {2024-01-01},
journal = {Langmuir},
publisher = {ACS Publications},
abstract = {We report the capture of nanosized oil droplets using a hydrophilic aldehyde-functional polymer brush. The brush was obtained via aqueous ARGET ATRP of a cis-diol-functional methacrylic monomer from a planar silicon wafer. This precursor was then selectively oxidized using an aqueous solution of NaIO4 to introduce aldehyde groups. The oil droplets were prepared by using excess sterically stabilized diblock copolymer nanoparticles to prepare a relatively coarse squalane-in-water Pickering emulsion (mean droplet diameter = 20 μm). This precursor was then further processed via high-pressure microfluidization to produce ∼200 nm squalane droplets. We demonstrate that adsorption of these nanosized oil droplets involves acetal bond formation between the cis-diol groups located on the steric stabilizer chains and the aldehyde groups on the brush. This interaction occurs under relatively mild conditions and can be tuned by adjusting the solution pH. Hence this is a useful model system for understanding oil droplet interactions with soft surfaces.},
keywords = {Adsorption, lipids, Liquids, Nanoemulsions, nanoparticles, openQCM NEXT, QCM, QCM-D, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {article}
}
Buksa, Hubert; Johnson, Edwin C; Chan, Derek HH; McBride, Rory J; Sanderson, George; Corrigan, Rebecca M; Armes, Steven P
Arginine-Functional Methacrylic Block Copolymer Nanoparticles: Synthesis, Characterization, and Adsorption onto a Model Planar Substrate Journal Article
In: Biomacromolecules, 2024.
Abstract | Links | BibTeX | Tags: aldehyde-functional, nanoparticles, openQCM NEXT, polymers, QCM, QCM-D, Quartz Crystal Microbalance
@article{buksa2024arginine,
title = {Arginine-Functional Methacrylic Block Copolymer Nanoparticles: Synthesis, Characterization, and Adsorption onto a Model Planar Substrate},
author = {Hubert Buksa and Edwin C Johnson and Derek HH Chan and Rory J McBride and George Sanderson and Rebecca M Corrigan and Steven P Armes},
url = {https://pubs.acs.org/doi/10.1021/acs.biomac.4c00128?goto=supporting-info},
doi = {https://pubs.acs.org/doi/10.1021/acs.biomac.4c00128?goto=supporting-info},
year = {2024},
date = {2024-05-02},
urldate = {2024-05-02},
journal = {Biomacromolecules},
publisher = {ACS Publications},
abstract = {Recently, we reported the synthesis of a hydrophilic aldehyde-functional methacrylic polymer (Angew. Chem., 2021, 60, 12032–12037). Herein we demonstrate that such polymers can be reacted with arginine in aqueous solution to produce arginine-functional methacrylic polymers without recourse to protecting group chemistry. Careful control of the solution pH is essential to ensure regioselective imine bond formation; subsequent reductive amination leads to a hydrolytically stable amide linkage. This new protocol was used to prepare a series of arginine-functionalized diblock copolymer nanoparticles of varying size via polymerization-induced self-assembly in aqueous media. Adsorption of these cationic nanoparticles onto silica was monitored using a quartz crystal microbalance. Strong electrostatic adsorption occurred at pH 7 (Γ = 14.7 mg m–2), whereas much weaker adsorption occurred at pH 3 (Γ = 1.9 mg m–2). These findings were corroborated by electron microscopy, which indicated a surface coverage of 42% at pH 7 but only 5% at pH 3},
keywords = {aldehyde-functional, nanoparticles, openQCM NEXT, polymers, QCM, QCM-D, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {article}
}
Astier, Samuel; Johnson, Edwin C; Norvilaite, Oleta; Varlas, Spyridon; Brotherton, Emma E; Sanderson, George; Leggett, Graham J; Armes, Steven P
Controlling Adsorption of Diblock Copolymer Nanoparticles onto an Aldehyde-Functionalized Hydrophilic Polymer Brush via pH Modulation Journal Article
In: Langmuir, 2024.
Abstract | Links | BibTeX | Tags: Adsorption, Copolymers, nanoparticles, openQCM NEXT, QCM-D, Silicon, Solution chemistry
@article{astier2024controlling,
title = {Controlling Adsorption of Diblock Copolymer Nanoparticles onto an Aldehyde-Functionalized Hydrophilic Polymer Brush via pH Modulation},
author = {Samuel Astier and Edwin C Johnson and Oleta Norvilaite and Spyridon Varlas and Emma E Brotherton and George Sanderson and Graham J Leggett and Steven P Armes},
url = {https://pubs.acs.org/doi/full/10.1021/acs.langmuir.3c03392},
doi = {https://doi.org/10.1021/acs.langmuir.3c03392},
year = {2024},
date = {2024-02-06},
urldate = {2024-02-06},
journal = {Langmuir},
publisher = {ACS Publications},
abstract = {Sterically stabilized diblock copolymer nanoparticles with a well-defined spherical morphology and tunable diameter were prepared by RAFT aqueous emulsion polymerization of benzyl methacrylate at 70 °C. The steric stabilizer precursor used for these syntheses contained pendent cis-diol groups, which means that such nanoparticles can react with a suitable aldehyde-functional surface via acetal bond formation. This principle is examined herein by growing an aldehyde-functionalized polymer brush from a planar silicon wafer and studying the extent of nanoparticle adsorption onto this model substrate from aqueous solution at 25 °C using a quartz crystal microbalance (QCM). The adsorbed amount, Γ, depends on both the nanoparticle diameter and the solution pH, with minimal adsorption observed at pH 7 or 10 and substantial adsorption achieved at pH 4. Variable-temperature QCM studies provide strong evidence for chemical adsorption, while scanning electron microscopy images recorded for the nanoparticle-coated brush surface after drying indicate mean surface coverages of up to 62%. This fundamental study extends our understanding of the chemical adsorption of nanoparticles on soft substrates.},
keywords = {Adsorption, Copolymers, nanoparticles, openQCM NEXT, QCM-D, Silicon, Solution chemistry},
pubstate = {published},
tppubtype = {article}
}
Chen, Xie
QCM anal`yza nanočástic a molekul Masters Thesis
České vysoké učen'i technické v Praze. Vypočetn'i a informačn'i centrum., 2024.
Abstract | Links | BibTeX | Tags: Cortisol, nanodiamonds, nanoparticles, openQCM Q-1, QCM-D, Quartz Crystal Microbalance
@mastersthesis{chen2024qcm,
title = {QCM anal`yza nanočástic a molekul},
author = {Xie Chen},
url = {https://dspace.cvut.cz/handle/10467/113400},
year = {2024},
date = {2024-01-22},
urldate = {2024-01-22},
school = {České vysoké učen'i technické v Praze. Vypočetn'i a informačn'i centrum.},
abstract = {Sensors based on quartz crystal microbalances (QCM) have dominated research in recent years. They have produced excellent laboratory results in analyzing the mass as well as the conformation of nanoparticles and molecules. The technology is constantly developed and widely used in various fields of chemistry, physics and biology. Here, we investigated a novel concept based on the use of nanodiamonds on QCM and explored the performance of nanodiamonds on QCM sensors, which helps in expanding the application of nanodiamonds in biosensing and exploring their effectiveness in QCM setups. We established a procedure and suitable parameters for the QCM sensor measurement. 5 MHz opensource QCM sensor system was used for building up the sensor assay for detection of cortisol via antigen (Ag)-antibody (Ab) reactions. Optical pictures after each functionalization step as well as scanning electron microscopy (SEM) pictures before and after the experiment were observed and compared. The values of amplitude, phase, resonance frequency, and dissipation were acquired in dry and water environment. The main evaluated QCM parameters were changes in resonance frequency (Δf) and simultaneous changes in QCM energy dissipation (ΔD), corresponding to changes in mass and morphology of the investigated sensor structure. Thereby we identified sensor assay build up, its functioning in dry and water conditions as well as potential issues such as partial release of nanodiamonds during the chemical treatments.
Sensors based on quartz crystal microbalances (QCM) have dominated research in recent years. They have produced excellent laboratory results in analyzing the mass as well as the conformation of nanoparticles and molecules. The technology is constantly developed and widely used in various fields of chemistry, physics and biology. Here, we investigated a novel concept based on the use of nanodiamonds on QCM and explored the performance of nanodiamonds on QCM sensors, which helps in expanding the application of nanodiamonds in biosensing and exploring their effectiveness in QCM setups. We established a procedure and suitable parameters for the QCM sensor measurement. 5 MHz opensource QCM sensor system was used for building up the sensor assay for detection of cortisol via antigen (Ag)-antibody (Ab) reactions. Optical pictures after each functionalization step as well as scanning electron microscopy (SEM) pictures before and after the experiment were observed and compared. The values of amplitude, phase, resonance frequency, and dissipation were acquired in dry and water environment. The main evaluated QCM parameters were changes in resonance frequency (Δf) and simultaneous changes in QCM energy dissipation (ΔD), corresponding to changes in mass and morphology of the investigated sensor structure. Thereby we identified sensor assay build up, its functioning in dry and water conditions as well as potential issues such as partial release of nanodiamonds during the chemical treatments.},
keywords = {Cortisol, nanodiamonds, nanoparticles, openQCM Q-1, QCM-D, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {mastersthesis}
}
Rohman, Yadi Mulyadi; Sukowati, Riris; Priyanto, Aan; Hapidin, Dian Ahmad; Edikresnha, Dhewa; Khairurrijal, Khairurrijal
Quartz Crystal Microbalance Coated with Polyacrylonitrile/Nickel Nanofibers for High-Performance Methanol Gas Detection Journal Article
In: ACS Omega, 2023.
Abstract | Links | BibTeX | Tags: Alcohols, Nanofibers, nanoparticles, Nickel, openQCM Wi2, QCM, Quartz Crystal Microbalance, sensors
@article{rohman2023quartz,
title = {Quartz Crystal Microbalance Coated with Polyacrylonitrile/Nickel Nanofibers for High-Performance Methanol Gas Detection},
author = {Yadi Mulyadi Rohman and Riris Sukowati and Aan Priyanto and Dian Ahmad Hapidin and Dhewa Edikresnha and Khairurrijal Khairurrijal},
url = {https://pubs.acs.org/doi/full/10.1021/acsomega.3c00760},
doi = {https://doi.org/10.1021/acsomega.3c00760},
year = {2023},
date = {2023-03-29},
urldate = {2023-01-01},
journal = {ACS Omega},
publisher = {ACS Publications},
abstract = {This study describes a sensor based on quartz crystal microbalance (QCM) coated by polyacrylonitrile (PAN) nanofibers containing nickel nanoparticles for methanol gas detection. The PAN/nickel nanofibers composites were made via electrospinning and electrospray methods. The QCM sensors coated with the PAN/nickel nanofiber composite were evaluated for their sensitivities, selectivities, and stabilities. The morphologies and elemental compositions of the sensors were examined using a scanning electron microscope-energy dispersive X-ray. A Fourier Transform Infrared spectrometer was used to investigate the elemental bonds within the nanofiber composites. The QCM sensors coated with PAN/nickel nanofibers offered a high specific surface area to enhance the QCM sensing performance. They exhibited excellent sensing characteristics, including a high sensitivity of 389.8 ± 3.8 Hz/SCCM, response and recovery times of 288 and 251 s, respectively, high selectivity for methanol compared to other gases, a limit of detection (LOD) of about 1.347 SCCM, and good long-term stability. The mechanism of methanol gas adsorption by the PAN/nickel nanofibers can be attributed to intermolecular interactions, such as the Lewis acid–base reaction by PAN nanofibers and hydrogen bonding by nickel nanoparticles. The results suggest that QCM-coated PAN/nickel nanofiber composites show great potential for the design of highly sensitive and selective methanol gas sensors.},
key = {Alcohols,Nanofibers,Nanoparticles,Nickel,Sensors},
keywords = {Alcohols, Nanofibers, nanoparticles, Nickel, openQCM Wi2, QCM, Quartz Crystal Microbalance, sensors},
pubstate = {published},
tppubtype = {article}
}
György, Dr. Csilla; Kirkman, Dr. Paul M.; Neal, Dr. Thomas J.; Chan, Dr. Derek H. H.; Williams, Megan; Smith, Dr. Timothy; Growney, Dr. David J.; Armes, Prof. Steven P.
Enhanced Adsorption of Epoxy-Functional Nanoparticles onto Stainless Steel Significantly Reduces Friction in Tribological Studies Journal Article
In: Angewandte Chemie International Edition, 2023.
Abstract | Links | BibTeX | Tags: epoxy-functional noparticles, nanoparticles, polymerization, polymerization-induced, QCM-D, Quartz Crystal Microbalance, RAFT, self-assembly, stainless steel
@article{armesenhanced,
title = {Enhanced Adsorption of Epoxy-Functional Nanoparticles onto Stainless Steel Significantly Reduces Friction in Tribological Studies},
author = {Dr. Csilla György and Dr. Paul M. Kirkman and Dr. Thomas J. Neal and Dr. Derek H. H. Chan and Megan Williams and Dr. Timothy Smith and Dr. David J. Growney and Prof. Steven P. Armes},
url = {https://onlinelibrary.wiley.com/doi/10.1002/anie.202218397},
doi = {https://doi.org/10.1002/anie.202218397},
year = {2023},
date = {2023-01-18},
urldate = {2023-01-18},
journal = {Angewandte Chemie International Edition},
publisher = {Wiley Online Library},
abstract = {Epoxy-functional sterically-stabilized diblock copolymer nanoparticles (~27 nm) are prepared via RAFT dispersion polymerization in mineral oil. Nanoparticle adsorption onto stainless steel is examined using a quartz crystal microbalance. Incorporating epoxy groups within the steric stabilizer chains results in a near two-fold increase in the adsorbed amount, Γ, at 20 °C (7.6 mg m-2) compared to epoxy-core functional nanoparticles (3.7 mg m-2) or non-functional nanoparticles (3.8 mg m-2). A larger difference in Γ is observed at 40 °C; this suggests chemical adsorption of the nanoparticles rather than merely physical adsorption. A remarkable near five-fold increase in Γ is observed for larger (~50 nm) epoxy-functional nanoparticles compared to non-functional nanoparticles (31.3 vs. 6.4 mg m-2, respectively). Tribological studies conducted at 60-120 °C confirm that the adsorption of epoxy-functional nanoparticles leads to a significant reduction in the friction coefficient.},
key = {QCM-D, nanoparticles},
keywords = {epoxy-functional noparticles, nanoparticles, polymerization, polymerization-induced, QCM-D, Quartz Crystal Microbalance, RAFT, self-assembly, stainless steel},
pubstate = {published},
tppubtype = {article}
}
Brotherton, Emma E; Josland, Daniel; Gyorgy, Csilla; Johnson, Edwin C; Chan, Derek HH; Smallridge, Mark J; Armes, Steven P
Histidine-Functionalized Diblock Copolymer Nanoparticles Exhibit Enhanced Adsorption onto Planar Stainless Steel Journal Article
In: Macromolecular Rapid Communications, pp. 2200903, 2022.
Abstract | Links | BibTeX | Tags: Histidine-Functionalized, nanoparticles, polymerization, QCM
@article{brotherton2022histidine,
title = {Histidine-Functionalized Diblock Copolymer Nanoparticles Exhibit Enhanced Adsorption onto Planar Stainless Steel},
author = {Emma E Brotherton and Daniel Josland and Csilla Gyorgy and Edwin C Johnson and Derek HH Chan and Mark J Smallridge and Steven P Armes},
url = {https://onlinelibrary.wiley.com/doi/10.1002/marc.202200903},
doi = {https://doi.org/10.1002/marc.202200903},
year = {2022},
date = {2022-12-19},
urldate = {2022-01-01},
journal = {Macromolecular Rapid Communications},
pages = {2200903},
publisher = {Wiley Online Library},
abstract = {RAFT aqueous emulsion polymerization of isopropylideneglycerol monomethacrylate (IPGMA) is used to prepare a series of PGEO5MA46-PIPGMAy nanoparticles, where PGEO5MA is a hydrophilic methacrylic steric stabilizer block bearing pendent cis-diol groups. TEM studies confirmed that well-defined spherical nanoparticles were obtained while DLS analysis indicated that the z-average particle diameter could be adjusted from 68 nm to 188 nm by systematically varying the target degree of polymerization for the core-forming PIPGMA block. Sodium periodate was employed as a selective oxidant to convert the cis-diol groups on PGEO5MA46-PIPGMA500 and PGEO5MA46-PIPGMA1000 nanoparticles into the analogous aldehyde-functionalized nanoparticles, which were then reacted with histidine via reductive amination. In each case, the extent of functionalization was more than 99% as judged by 1H NMR spectroscopy. Moreover, aqueous electrophoresis studies indicated that such derivatization converted initially neutral nanoparticles into nanoparticles that exhibit an isoelectric point (IEP) at around pH 7. Interestingly, DLS studies confirmed that such histidine-derivatized nanoparticles remained colloidally stable over a wide pH range, with no sign of any aggregation at around the IEP. A quartz crystal microbalance (QCM) was employed at 25 °C to assess the extent of adsorption of both the cis-diol- and histidine-functionalized nanoparticles onto a planar stainless steel substrate at pH 6. The histidine-bearing nanoparticles adsorbed much more strongly than their cis-diol counterparts. For the highest adsorbed amount of 70.5 mg m-2, the adsorbed layer of nanoparticles was examined by SEM, which enabled a fractional surface coverage of 0.23 to be estimated via digital image analysis.},
key = {Histidine-Functionalized, QCM, nanoparticles, polymerization},
keywords = {Histidine-Functionalized, nanoparticles, polymerization, QCM},
pubstate = {published},
tppubtype = {article}
}
openQCM – Powered by Novaetech S.r.l