openQCM – Powered by Novaetech S.r.l
Publications citing the applications of openQCM (by Novaetech S.r.l.) instruments and accessories in scientific research.
The list of scientific papers published on the most important journals showing the usage of openQCM in several scientific fields, such as thin film deposition, chemical sensors, biological research and biosensors.
Because of the large number of publications, we are reorganizing everything by subject areas. This will take some time. Thank you for your patience
Censor, Semion; Martin, Jorge Vega; Silberbush, Ohad; Reddy, Samala Murali Mohan; Zalk, Ran; Friedlander, Lonia; Trabada, Daniel G.; Mendieta, Jesús; Saux, Guillaume Le; Moreno, Jesús Ignacio Mendieta; Zotti, Linda Angela; Mateo, José Ortega; Ashkenasy, Nurit
Long-Range Proton Channels Constructed via Hierarchical Peptide Self-Assembly Journal Article
In: Advanced Materials, vol. n/a, no. n/a, pp. 2409248, 2024.
Abstract | Links | BibTeX | Tags: Dissipation, molecular dynamic simulations, openQCM Q-1, peptides, proton channels, proton transport, QCM-D, Quartz Crystal Microbalance, self-assembly
@article{https://doi.org/10.1002/adma.202409248,
title = {Long-Range Proton Channels Constructed via Hierarchical Peptide Self-Assembly},
author = {Semion Censor and Jorge Vega Martin and Ohad Silberbush and Samala Murali Mohan Reddy and Ran Zalk and Lonia Friedlander and Daniel G. Trabada and Jesús Mendieta and Guillaume Le Saux and Jesús Ignacio Mendieta Moreno and Linda Angela Zotti and José Ortega Mateo and Nurit Ashkenasy},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202409248},
doi = {https://doi.org/10.1002/adma.202409248},
year = {2024},
date = {2024-11-12},
journal = {Advanced Materials},
volume = {n/a},
number = {n/a},
pages = {2409248},
abstract = {Abstract The quest to understand and mimic proton translocation mechanisms in natural channels has driven the development of peptide-based artificial channels facilitating efficient proton transport across nanometric membranes. It is demonstrated here that hierarchical peptide self-assembly can form micrometers-long proton nanochannels. The fourfold symmetrical peptide design leverages intermolecular aromatic interactions to align self-assembled cyclic peptide nanotubes, creating hydrophilic nanochannels between them. Titratable amino acid sidechains are positioned adjacent to each other within the channels, enabling the formation of hydrogen-bonded chains upon hydration, and facilitating efficient proton transport. Moreover, these chains are enriched with protons and water molecules by interacting with immobile counter ions introduced into the channels, increasing proton flow density and rate. This system maintains proton transfer rates closely resembling those in natural protein channels over micrometer distances. The functional behavior of these inherently recyclable and biocompatible systems opens the door for their exploitation in diverse applications in energy storage and conversion, biomedicine, and bioelectronics.},
keywords = {Dissipation, molecular dynamic simulations, openQCM Q-1, peptides, proton channels, proton transport, QCM-D, Quartz Crystal Microbalance, self-assembly},
pubstate = {published},
tppubtype = {article}
}
Karchilakis, Georgios; Varlas, Spyridon; Johnson, Edwin C; Norvilaite, Oleta; Farmer, Matthew AH; Sanderson, George; Leggett, Graham J; Armes, Steven P
Capturing Enzyme-Loaded Diblock Copolymer Vesicles Using an Aldehyde-Functionalized Hydrophilic Polymer Brush Journal Article
In: Langmuir, 2024.
Abstract | Links | BibTeX | Tags: Adsorption, openQCM NEXT, peptides, proteins, QCM-D, Quartz Crystal Microbalance, RAFT polymerization, Thickness, Vesicles
@article{karchilakis2024capturing,
title = {Capturing Enzyme-Loaded Diblock Copolymer Vesicles Using an Aldehyde-Functionalized Hydrophilic Polymer Brush},
author = {Georgios Karchilakis and Spyridon Varlas and Edwin C Johnson and Oleta Norvilaite and Matthew AH Farmer and George Sanderson and Graham J Leggett and Steven P Armes},
url = {https://pubs.acs.org/doi/full/10.1021/acs.langmuir.4c01561},
doi = {https://doi.org/10.1021/acs.langmuir.4c01561},
year = {2024},
date = {2024-06-27},
urldate = {2024-06-27},
journal = {Langmuir},
publisher = {ACS Publications},
abstract = {Compared to lipids, block copolymer vesicles are potentially robust nanocontainers for enzymes owing to their enhanced chemical stability, particularly in challenging environments. Herein we report that cis-diol-functional diblock copolymer vesicles can be chemically adsorbed onto a hydrophilic aldehyde-functional polymer brush via acetal bond formation under mild conditions (pH 5.5, 20 °C). Quartz crystal microbalance studies indicated an adsorbed amount, Γ, of 158 mg m–2 for vesicle adsorption onto such brushes, whereas negligible adsorption (Γ = 0.1 mg m–2) was observed for a control experiment conducted using a cis-diol-functionalized brush. Scanning electron microscopy and ellipsometry studies indicated a mean surface coverage of around 30% at the brush surface, which suggests reasonably efficient chemical adsorption. Importantly, such vesicles can be conveniently loaded with a model enzyme (horseradish peroxidase, HRP) using an aqueous polymerization-induced self-assembly formulation. Moreover, the immobilized vesicles remained permeable toward small molecules while retaining their enzyme payload. The enzymatic activity of such HRP-loaded vesicles was demonstrated using a well-established colorimetric assay. In principle, this efficient vesicle-on-brush strategy can be applied to a wide range of enzymes and functional proteins for the design of next-generation immobilized nanoreactors for enzyme-mediated catalysis.},
keywords = {Adsorption, openQCM NEXT, peptides, proteins, QCM-D, Quartz Crystal Microbalance, RAFT polymerization, Thickness, Vesicles},
pubstate = {published},
tppubtype = {article}
}
Brotherton, Emma E; Johnson, Edwin C; Smallridge, Mark J; Hammond, Deborah B; Leggett, Graham J; Armes, Steven P
Hydrophilic Aldehyde-Functional Polymer Brushes: Synthesis, Characterization, and Potential Bioapplications Journal Article
In: Macromolecules, 2023.
Abstract | Links | BibTeX | Tags: Functionalization, Monomers, peptides, proteins, QCM, Thickness, X-ray, X-ray photoelectron spectroscopy
@article{brotherton2023hydrophilic,
title = {Hydrophilic Aldehyde-Functional Polymer Brushes: Synthesis, Characterization, and Potential Bioapplications},
author = {Emma E Brotherton and Edwin C Johnson and Mark J Smallridge and Deborah B Hammond and Graham J Leggett and Steven P Armes},
url = {https://pubs.acs.org/doi/full/10.1021/acs.macromol.2c02471},
doi = {https://doi.org/10.1021/acs.macromol.2c02471},
year = {2023},
date = {2023-02-22},
urldate = {2023-01-01},
journal = {Macromolecules},
publisher = {ACS Publications},
abstract = {Surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) is used to polymerize a cis-diol-functional methacrylic monomer (herein denoted GEO5MA) from planar silicon wafers. Ellipsometry studies indicated dry brush thicknesses ranging from 40 to 120 nm. The hydrophilic PGEO5MA brush is then selectively oxidized using sodium periodate to produce an aldehyde-functional hydrophilic PAGEO5MA brush. This post-polymerization modification strategy provides access to significantly thicker brushes compared to those obtained by surface-initiated ARGET ATRP of the corresponding aldehyde-functional methacrylic monomer (AGEO5MA). The much slower brush growth achieved in the latter case is attributed to the relatively low aqueous solubility of the AGEO5MA monomer. X-ray photoelectron spectroscopy (XPS) analysis confirmed that precursor PGEO5MA brushes were essentially fully oxidized to the corresponding PAGEO5MA brushes within 30 min of exposure to a dilute aqueous solution of sodium periodate at 22 °C. PAGEO5MA brushes were then functionalized via Schiff base chemistry using an amino acid (histidine), followed by reductive amination with sodium cyanoborohydride. Subsequent XPS analysis indicated that the mean degree of histidine functionalization achieved under optimized conditions was approximately 81%. Moreover, an XPS depth profiling experiment confirmed that the histidine groups were uniformly distributed throughout the brush layer. Surface ζ potential measurements indicated a significant change in the electrophoretic behavior of the zwitterionic histidine-functionalized brush relative to that of the non-ionic PGEO5MA precursor brush. The former brush exhibited cationic character at low pH and anionic character at high pH, with an isoelectric point being observed at around pH 7. Finally, quartz crystal microbalance studies indicated minimal adsorption of a model globular protein (BSA) on a PGEO5MA brush-coated substrate, whereas strong protein adsorption via Schiff base chemistry occurred on a PAGEO5MA brush-coated substrate.},
key = {Functionalization,Monomers,Peptides and proteins,Thickness,X-ray photoelectron spectroscopy},
keywords = {Functionalization, Monomers, peptides, proteins, QCM, Thickness, X-ray, X-ray photoelectron spectroscopy},
pubstate = {published},
tppubtype = {article}
}
Wasilewski, Tomasz; Szulczy'nski, Bartosz; Dobrzyniewski, Dominik; Jakubaszek, Weronika; Gębicki, Jacek; Kamysz, Wojciech
Development and Assessment of Regeneration Methods for Peptide-Based QCM Biosensors in VOCs Analysis Applications Journal Article
In: Biosensors, vol. 12, no. 5, pp. 309, 2022.
Abstract | Links | BibTeX | Tags: biosensors, biosensors fabrication, peptides, plasma
@article{wasilewski2022development,
title = {Development and Assessment of Regeneration Methods for Peptide-Based QCM Biosensors in VOCs Analysis Applications},
author = {Tomasz Wasilewski and Bartosz Szulczy'nski and Dominik Dobrzyniewski and Weronika Jakubaszek and Jacek Gębicki and Wojciech Kamysz},
url = {https://pubmed.ncbi.nlm.nih.gov/35624609/},
doi = {10.3390/bios12050309},
year = {2022},
date = {2022-01-01},
urldate = {2022-01-01},
journal = {Biosensors},
volume = {12},
number = {5},
pages = {309},
publisher = {MDPI},
abstract = {Cleaning a quartz crystal microbalance (QCM) plays a crucial role in the regeneration of its biosensors for reuse. Imprecise removal of a receptor layer from a transducer's surface can lead to unsteady operation during measurements. This article compares three approaches to regeneration of the piezoelectric transducers using the electrochemical, oxygen plasma and Piranha solution methods. Optimization of the cleaning method allowed for evaluation of the influence of cleaning on the surface of regenerated biosensors. The effectiveness of cleaning the QCM transducers with a receptor layer in the form of a peptide with the KLLFDSLTDLKKKMSEC-NH2 sequence was described. Preliminary cleaning was tested for new electrodes to check the potential impact of the cleaning on deposition and the transducer's operation parameters. The effectiveness of the cleaning was assessed via the measurement of a resonant frequency of the QCM transducers. Based on changes in the resonant frequency and the Sauerbrey equation, it was possible to evaluate the changes in mass adsorption on the transducer's surface. Moreover, the morphology of the QCM transducer's surface subjected to the selected cleaning techniques was presented with AFM imaging. The presented results confirm that each method is suitable for peptide-based biosensors cleaning. However, the most invasive seems to be the Piranha method, with the greatest decrease in performance after regeneration cycles (25% after three cycles). The presented techniques were evaluated for their efficiency with respect to a selected volatile compound, which in the future should allow reuse of the biosensors in particular applications, contributing to cost reduction and extension of the sensors' lifetime.},
keywords = {biosensors, biosensors fabrication, peptides, plasma},
pubstate = {published},
tppubtype = {article}
}
openQCM – Powered by Novaetech S.r.l