openQCM – Powered by Novaetech S.r.l
Publications citing the applications of openQCM (by Novaetech S.r.l.) instruments and accessories in scientific research.
The list of scientific papers published on the most important journals showing the usage of openQCM in several scientific fields, such as thin film deposition, chemical sensors, biological research and biosensors.
Because of the large number of publications, we are reorganizing everything by subject areas. This will take some time. Thank you for your patience
Macklin, Jack; Pfrang, Christian; Wady, Paul; Liu, Wanli; Davidson, Ruaridh; Milsom, Adam; Squires, Adam
In: Langmuir, vol. 0, no. 0, pp. null, 2025, (PMID: 40235269).
Abstract | Links | BibTeX | Tags: humidity, lipids, openQCM Holder, openQCM Q-1, QCM, Quartz Crystal Microbalance, Thickness, Thin films, Water
@article{doi:10.1021/acs.langmuir.4c05158,
title = {Use of Humidity Controlled Quartz Crystal Microbalance with Simultaneous Grazing Incidence Small Angle X-ray Scattering to Investigate the Self-assembly and Energetics of Lipid Thin Films},
author = {Jack Macklin and Christian Pfrang and Paul Wady and Wanli Liu and Ruaridh Davidson and Adam Milsom and Adam Squires},
url = {https://doi.org/10.1021/acs.langmuir.4c05158},
doi = {10.1021/acs.langmuir.4c05158},
year = {2025},
date = {2025-04-16},
urldate = {2025-04-16},
journal = {Langmuir},
volume = {0},
number = {0},
pages = {null},
abstract = {We present a novel method of analyzing lyotropic liquid crystal mesophases─self-organized amphiphile-water nanomaterials─using in situ grazing-incidence small-angle X-ray scattering (GI-SAXS) on a quartz crystal microbalance (QCM) in a controlled humidity environment. This combination simultaneously gives nanostructural dimensions and phase symmetry (through SAXS), compositional data (% water by weight, from QCM data), and water activity within the sample (from the equilibrium relative humidity above the film), as the sample film takes up and releases water during humidity sweeps. Analysis of the combined data provides immediate access to information typically built up from experiments on multiple individual samples prepared at different fixed compositions. Our approach greatly reduces the required sample quantities and preparation time while avoiding issues with sample-to-sample variations thanks to the collection of the multiple parameters simultaneously. It also extends the accessible range to the low water content region of the phase diagram, which is harder to access by fixed composition measurements and is highly relevant to coatings and powders exposed to ambient humidities. Here, we present data on dimyristoylphosphatidylcholine/water lamellar phases. Our calculated bilayer thickness and interbilayer repulsion values show good agreement with published data obtained from multiple individual samples, and we clearly demonstrate the ability to extend to lower water contents.},
note = {PMID: 40235269},
keywords = {humidity, lipids, openQCM Holder, openQCM Q-1, QCM, Quartz Crystal Microbalance, Thickness, Thin films, Water},
pubstate = {published},
tppubtype = {article}
}
Prasetya, Nicholaus; Okur, Salih
Investigation of the Free-Base Zr-Porphyrin MOFs as Humidity Sensors for an Indoor Setting Journal Article
In: 2024.
Abstract | Links | BibTeX | Tags: Adsorption, humidity, openQCM, QCM, QCM sensor, Zr-porphyrin metal organic frameworks
@article{prasetya2024investigation,
title = {Investigation of the Free-Base Zr-Porphyrin MOFs as Humidity Sensors for an Indoor Setting},
author = {Nicholaus Prasetya and Salih Okur},
url = {https://chemrxiv.org/engage/chemrxiv/article-details/6608e3c466c138172950e040},
doi = {https://doi.org/10.26434/chemrxiv-2024-1jwr7},
year = {2024},
date = {2024-04-01},
urldate = {2024-04-01},
abstract = {Maintaining optimal relative humidity is paramount for human comfort. Therefore, the utilization of quartz crystal microbalance (QCM) as a humidity sensor platform holds significant promise due to its cost-effectiveness and high sensitivity. This study explores the efficacy of three free-base Zr porphyrin metal-organic frameworks (MOFs) - namely MOF-525, MOF-545, and NU-902 - as sensitive materials for QCM-based humidity sensors. Our extended experimental findings reveal that these materials exhibit notable sensitivity, particularly within relative humidity ranges of 40% to 100%. However, we observe potential irreversible adsorption sites within the MOF-545 framework, hindering its ability to revert to its initial state after prolonged exposure. In light of this observation, we conduct periodic cycling experiments at relative humidity levels of 40-70% to evaluate the measurement repeatability and feasibility of these sensors for indoor applications. Interestingly, the periodic cycling study demonstrates that MOF-545 shows promising repeatability, positioning it as a strong contender for indoor humidity sensing. In contrast, MOF-525 may necessitate extended desorption time, and NU-902 displays diminished sensitivity at low relative humidity levels. Nevertheless, a preliminary treatment of the MOF-545 QCM sensor may be necessary to address irreversible adsorption sites and uphold measurement repeatability, as only reversible adsorption sites are currently accessible. This study underscores the potential of MOF-based QCM sensors for effective humidity monitoring in indoor environments, thus facilitating improved comfort and environmental control.},
keywords = {Adsorption, humidity, openQCM, QCM, QCM sensor, Zr-porphyrin metal organic frameworks},
pubstate = {published},
tppubtype = {article}
}
Jang, Il Ryu; Jung, Soon In; Park, Jeonhyeong; Ryu, Chaehyun; Park, Inyong; Kim, Sang Bok; Kim, Hoe Joon
In: Ceramics International, vol. 48, no. 6, pp. 8004–8011, 2022.
Abstract | Links | BibTeX | Tags: electrospray deposition, humidity
@article{jang2022direct,
title = {Direct and controlled device integration of graphene oxide on Quartz Crystal Microbalance via electrospray deposition for stable humidity sensing},
author = {Il Ryu Jang and Soon In Jung and Jeonhyeong Park and Chaehyun Ryu and Inyong Park and Sang Bok Kim and Hoe Joon Kim},
url = {https://www.sciencedirect.com/science/article/pii/S0272884221037706},
year = {2022},
date = {2022-01-01},
urldate = {2022-01-01},
journal = {Ceramics International},
volume = {48},
number = {6},
pages = {8004--8011},
publisher = {Elsevier},
abstract = {Integration of advanced and functional materials onto conventional sensing platforms can improve the device performances and even discover new applications. For piezoelectric resonant sensors, an addition of sensing materials can induce damping and hinder a stable device operation. Hence, the development of efficient method for materials integration is important to ensure high-performance and reliable sensor operation. This work presents a direct and precisely controlled integration of graphene oxide (GO) using the electrospray deposition (ESD) onto a 10 MHz Quartz Crystal Microbalance (QCM) for humidity sensing. The proposed ESD method achieves a high mass resolution of a few nanograms. Moreover, the GO uniformly coats across the sensing electrode region as it acts as a ground electrode during ESD. The proposed ESD method also works for a wide range of nanomaterials, such as carbon nanotubes, tin oxide, and silicon carbide micro-and nano-powders. Compared to the conventional drop-casting and dip coating approaches, our method ensures minimal GO agglomeration, resulting in a stable QCM-oscillator operation in a wide range of relative humidity from 11% to 97%. The measurement sensitivity increases with an amount of GO, but less GO results in better noise and detection limit performances. The results shed light on the importance of selecting an optimal amount of sensing materials for stable sensor operations.},
keywords = {electrospray deposition, humidity},
pubstate = {published},
tppubtype = {article}
}
openQCM – Powered by Novaetech S.r.l