openQCM – Powered by Novaetech S.r.l
Publications citing the applications of openQCM (by Novaetech S.r.l.) instruments and accessories in scientific research.
The list of scientific papers published on the most important journals showing the usage of openQCM in several scientific fields, such as thin film deposition, chemical sensors, biological research and biosensors.
Because of the large number of publications, we are reorganizing everything by subject areas. This will take some time. Thank you for your patience
Dubovská, Lucie
2023.
Abstract | Links | BibTeX | Tags: Bacteria detection, BDD diamond, Bioreceptor, Biosensing, CVD diamond, Electrochemistry, His-tagged protein, Love-waves, openQCM Q-1, Quartz Crystal Microbalance, Surface acoustic waves
@phdthesis{dubovskaessentialb,
title = {Essential elements towards the development of diamond-based biosensors for bacteria detection in water},
author = {Lucie Dubovská},
url = {https://www.fbmi.cvut.cz/sites/default/files/2024-09/Dubovsk%C3%A1_dis.%20pr%C3%A1ceDubovska.pdf},
year = {2023},
date = {2023-10-01},
urldate = {2023-10-01},
abstract = {Detection of pathogenic bacteria is an inherent part of environmental and industrial safety. In spite of good selectivity of conventional methods, they are time-consuming and labor-intensive. Biosensors are good candidates for real-time monitoring and fast detection of pathogenic agents. The first part of this Thesis resumes the state of the art of whole cell bacteria detection including conventional and biosensor methods. We summarize recent developments in biosensing technologies for bacteria detection in aqueous solutions and food matrices based on different transduction methods (optical, electrochemical and acoustic). Their advantages and disadvantages are discussed and compared. In the second part, studies towards the development of the proposed biosensor: diamond coated Love wave surface acoustic wave sensor as a transducer and Escherichia coli binding proteins as a bioreceptor, are presented. Theoretical simulations of LW-SAW sensors are carried out for three different piezoelectric substrates – ST-cut quartz, 36◦YX LiNbO3 and 36◦YX LiTaO3, that can support the propagation of shear waves. Phase velocity vp and electromechanical coupling coefficient K2 dispersion curves were simulated and vp was compared to experimental results for the diamond/SiO2/ST-cut quartz and diamond/SiO2/36◦YX LiTaO3 structures. Experimental results have shown disagreement with the theoretical ones which is attributed to the different mechanical properties used in simulations and real samples. Two different approaches of sensitivity enhancement were studied - experimental deposition of diamond grains on LW-SAW sensors instead of continuous layer and simulation study of use of diamond phononic metamaterials on surface of LW-SAW sensors. A short simulation chapter is dedicated also to the use of diamond and silicon carbide layers as a passivation layer for package less sensors and the usability of both materials were confirmed. E.coli binding his-tagged proteins gp17, gp12 and ORF26 were successfully produced and purified. Immunofluorescent assays confirmed that ORF26 and gp17 bind specifically to the E.coli cells, gp12 showed binding also to the Salmonella cells. Two different approaches of attachment of these proteins to the boron doped diamond surface has been successfully developed: 1/ direct electrodeposition of nickel nanoparticles and 2/ electrochemical grafting followed by EDC/NHS chemistry for attachment of NTA acid that chelates nickel ions. Further experiments must be carried out to confirm bacteria binding on biosensors. The last part is devoted to the study of boron doped diamond coated QCM sensors for the biosensing applications. We successfully deposited BDD layers on the QCM crystals, but the functionalization of the layers followed by attachment of the bacteria was not successfully finished so far and it needs further attention and development. Even though the work did not lead to the development of the working diamond-based biosensors, it laid important building stones. Sensitivity of diamond-coated LW-SAW sensors is not reduced that much as was expected from the theoretical simulations, as the Young modulus of thin CVD diamond layer grown at low temperature is much lower than for the bulk diamond. The his-tagged tail fibers were successfully produced and two different protocols for their attachment to the boron doped diamond layers were developed. Also the deposition of low temperature BDD layers on QCMs sensors were successfully achieved. Results of this Thesis are promising for development of biosensors with dualread out system - coupled electrochemical and acoustic detection.},
keywords = {Bacteria detection, BDD diamond, Bioreceptor, Biosensing, CVD diamond, Electrochemistry, His-tagged protein, Love-waves, openQCM Q-1, Quartz Crystal Microbalance, Surface acoustic waves},
pubstate = {published},
tppubtype = {phdthesis}
}
Ermek, Erhan; Ayan, Esra; Tokay, Nurettin; DeMirci, Hasan; Kepceoğlu, Abdullah
Electrospun biotin-and streptavidin-coated quartz crystal microbalance surfaces: characterization and mass sensing performance using OpenQCM Journal Article
In: 2023.
Abstract | Links | BibTeX | Tags: Biosensing, Biotin, Electrospinning, openQCM, QCM, Quartz Crystal Microbalance, Raman spectroscopy, Streptavidin, Surface coating
@article{ermek2023electrospun,
title = {Electrospun biotin-and streptavidin-coated quartz crystal microbalance surfaces: characterization and mass sensing performance using OpenQCM},
author = {Erhan Ermek and Esra Ayan and Nurettin Tokay and Hasan DeMirci and Abdullah Kepceoğlu},
url = {https://www.researchsquare.com/article/rs-2995721/v1},
doi = {https://doi.org/10.21203/rs.3.rs-2995721/v1},
year = {2023},
date = {2023-06-06},
urldate = {2023-06-06},
abstract = {In this study, a quartz crystal microbalance (QCM) sensor surface was coated with biotin and/or streptavidin using the electrospinning method. The coated surfaces were analyzed using the Raman spectroscopy method. QCM measurements were carried out using the OpenQCM platform. The results indicate that the electrospinning method can be used to coat QCM surfaces with biotin and/or streptavidin and that the coated surfaces exhibit distinct morphological and spectroscopic properties. The QCM measurements showed that the coated surfaces are highly sensitive to changes in mass, indicating their potential for use in biosensing applications. Overall, this study provides new insights into the use of QCM sensors coated with biotin and/or streptavidin for biological sensing and detection applications.},
keywords = {Biosensing, Biotin, Electrospinning, openQCM, QCM, Quartz Crystal Microbalance, Raman spectroscopy, Streptavidin, Surface coating},
pubstate = {published},
tppubtype = {article}
}
openQCM – Powered by Novaetech S.r.l