openQCM – Powered by Novaetech S.r.l
Publications citing the applications of openQCM (by Novaetech S.r.l.) instruments and accessories in scientific research.
The list of scientific papers published on the most important journals showing the usage of openQCM in several scientific fields, such as thin film deposition, chemical sensors, biological research and biosensors.
Because of the large number of publications, we are reorganizing everything by subject areas. This will take some time. Thank you for your patience
Ghisellini, Paola; Garbati, Patrizia; Pietropaoli, Marco; Cersini, Antonella; Pietrella, Gabriele; Rando, Cristina; Giacomelli, Luca; Ottoboni, Stefano; Formato, Giovanni; Eggenhöffner, Roberto
A Novel Biosensor for the Early Detection of Aethina tumida via Kodamaea ohmeri in Honeybee Colonies Journal Article
In: Insects, vol. 16, no. 4, 2025, ISSN: 2075-4450.
Abstract | Links | BibTeX | Tags: Aethina tumida detection, Apis mellifera health, biosensors, Kodamaea ohmeri detection, openQCM Wi2, QCM, Quartz Crystal Microbalance
@article{insects16040363,
title = {A Novel Biosensor for the Early Detection of Aethina tumida via Kodamaea ohmeri in Honeybee Colonies},
author = {Paola Ghisellini and Patrizia Garbati and Marco Pietropaoli and Antonella Cersini and Gabriele Pietrella and Cristina Rando and Luca Giacomelli and Stefano Ottoboni and Giovanni Formato and Roberto Eggenhöffner},
url = {https://www.mdpi.com/2075-4450/16/4/363},
doi = {10.3390/insects16040363},
issn = {2075-4450},
year = {2025},
date = {2025-04-01},
urldate = {2025-04-01},
journal = {Insects},
volume = {16},
number = {4},
abstract = {Aethina tumida, commonly known as the small hive beetle, poses a threat to honeybee populations, particularly Apis mellifera, across several European regions. Originating in sub-Saharan Africa, there is a risk of the infestation spreading from Calabria, a region in the south of Italy. The essential role played by Apis spp. in pollination biodiversity preservation, agricultural productivity, and the overall economy is related to the dangers posed by the invasion of Aethina tumida. Current detection methods often fail to identify infestations early, leading to significant colony losses. We focused on creating a biosensor to improve the detection of Kodamaea ohmeri, a recently identified yeast that coexists symbiotically with Aethina tumida. The biosensor was designed to exploit the highly sensitive quartz crystal microbalance to identify a specific peptide linked to Kodamaea ohmeri in honey specimens. Its gold-plated surface over quartz was functionalized with an antibody effective in recognizing the peptide associated with Kodamaea ohmeri, a potential warning for detecting Aethina tumida. Preliminary results support the possibility of using such biosensor technology to detect infestation and enhance colony management techniques for honeybees, enabling beekeepers to implement prompt and focused treatments. In addition, reducing the size and cost of these biosensors and offering user training would be very helpful in having them used in beekeeping.},
keywords = {Aethina tumida detection, Apis mellifera health, biosensors, Kodamaea ohmeri detection, openQCM Wi2, QCM, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {article}
}
Obořilová, Radka; Kučerová, Eliška; Botka, Tibor; Vaisocherová-Lísalová, Hana; Skládal, Petr; Farka, Zdeněk
Piezoelectric biosensor with dissipation monitoring enables the analysis of bacterial lytic agent activity Journal Article
In: Nature - Scientific Reports, vol. 15, no. 1, pp. 3419, 2025, ISSN: 2045-2322.
Abstract | Links | BibTeX | Tags: Antimicrobial treatment, Bacteriophages, biosensors, Multidrug-resistant bacteria, openQCM Q-1, Phage therapy, Phage-antibiotic synergy, Piezoelectric biosensor, QCM, QCM-D, Quartz Crystal Microbalance, Staphylococcus aureus
@article{Obořilová2025,
title = {Piezoelectric biosensor with dissipation monitoring enables the analysis of bacterial lytic agent activity},
author = {Radka Obořilová and Eliška Kučerová and Tibor Botka and Hana Vaisocherová-Lísalová and Petr Skládal and Zdeněk Farka},
url = {https://doi.org/10.1038/s41598-024-85064-x},
doi = {10.1038/s41598-024-85064-x},
issn = {2045-2322},
year = {2025},
date = {2025-01-27},
urldate = {2025-01-27},
journal = {Nature - Scientific Reports},
volume = {15},
number = {1},
pages = {3419},
abstract = {Antibiotic-resistant strains of Staphylococcus aureus pose a significant threat in healthcare, demanding urgent therapeutic solutions. Combining bacteriophages with conventional antibiotics, an innovative approach termed phage-antibiotic synergy, presents a promising treatment avenue. However, to enable new treatment strategies, there is a pressing need for methods to assess their efficacy reliably and rapidly. Here, we introduce a novel approach for real-time monitoring of pathogen lysis dynamics employing the piezoelectric quartz crystal microbalance (QCM) with dissipation (QCM-D) technique. The sensor, a QCM chip modified with the bacterium S. aureus RN4220 ΔtarM, was utilized to monitor the activity of the enzyme lysostaphin and the phage P68 as model lytic agents. Unlike conventional QCM solely measuring resonance frequency changes, our study demonstrates that dissipation monitoring enables differentiation of bacterial growth and lysis caused by cell-attached lytic agents. Compared to reference turbidimetry measurements, our results reveal distinct alterations in the growth curve of the bacteria adhered to the sensor, characterized by a delayed lag phase. Furthermore, the dissipation signal analysis facilitated the precise real-time monitoring of phage-mediated lysis. Finally, the QCM-D biosensor was employed to evaluate the synergistic effect of subinhibitory concentrations of the antibiotic amoxicillin with the bacteriophage P68, enabling monitoring of the lysis of P68-resistant wild-type strain S. aureus RN4220. Our findings suggest that this synergy also impedes the formation of bacterial aggregates, the precursors of biofilm formation. Overall, this method brings new insights into phage-antibiotic synergy, underpinning it as a promising strategy against antibiotic-resistant bacterial strains with broad implications for treatment and prevention.},
keywords = {Antimicrobial treatment, Bacteriophages, biosensors, Multidrug-resistant bacteria, openQCM Q-1, Phage therapy, Phage-antibiotic synergy, Piezoelectric biosensor, QCM, QCM-D, Quartz Crystal Microbalance, Staphylococcus aureus},
pubstate = {published},
tppubtype = {article}
}
Forinová, Michala; Seidlová, Anna; Pilipenco, Alina; Jr, N Scott Lynn; Obořilová, Radka; Farka, Zdeněk; Skládal, Petr; Saláková, Alena; Spasovová, Monika; Houska, Milan; others,
In: Current Research in Biotechnology, pp. 100166, 2023.
Abstract | Links | BibTeX | Tags: Antifouling coating, biosensors, Cultivation-based methods, openQCM Q-1, QCM-D, Quartz Crystal Microbalance, S. aureus
@article{forinova2023comparative,
title = {A Comparative Assessment of a Piezoelectric Biosensor Based on a New Antifouling Nanolayer and Cultivation Methods: Enhancing S. aureus Detection in Fresh Dairy Products},
author = {Michala Forinová and Anna Seidlová and Alina Pilipenco and N Scott Lynn Jr and Radka Obořilová and Zdeněk Farka and Petr Skládal and Alena Saláková and Monika Spasovová and Milan Houska and others},
url = {https://www.sciencedirect.com/science/article/pii/S2590262823000485},
doi = {https://doi.org/10.1016/j.crbiot.2023.100166},
year = {2023},
date = {2023-11-23},
urldate = {2023-11-23},
journal = {Current Research in Biotechnology},
pages = {100166},
publisher = {Elsevier},
abstract = {Ensuring dairy product safety demands rapid and precise Staphylococcus aureus (S. aureus) detection. Biosensors show promise, but their performance is often demonstrated in model samples using non-native pathogens and has never been studied towards S. aureus detection in naturally contaminated samples. This study addresses the gap by directly comparing results taken with a novel piezoelectric biosensor, capable of one-step detection, with four conventional cultivation-based methods. Our findings reveal that this biosensor, based on an antifouling nanolayer-coated biochip, exhibits exceptional resistance to biofouling from unprocessed dairy products and is further capable of specific S. aureus detection. Notably, it performed comparably to Petrifilm and Baird-Parker methods but delivered results in only 30 min, bringing a substantial reduction from the 24 h required by cultivation-based techniques. Our study also highlights differences in the performance of cultivation methods when analyzing artificially spiked versus naturally contaminated foods. These findings underline the potential of antifouling biosensors as efficient reliable tools for rapid, cost-effective, point-of-care testing, enhancing fresh dairy product safety and S. aureus detection.},
keywords = {Antifouling coating, biosensors, Cultivation-based methods, openQCM Q-1, QCM-D, Quartz Crystal Microbalance, S. aureus},
pubstate = {published},
tppubtype = {article}
}
Lino, Catarina; Barrias, Sara; Chaves, Raquel; Adega, Filomena; Fernandes, José Ramiro; Martins-Lopes, Paula
Development of a QCM-based biosensor for the detection of non-small cell lung cancer biomarkers in liquid biopsies Journal Article
In: Talanta, pp. 124624, 2023.
Abstract | Links | BibTeX | Tags: biosensors, blood plasma, Cancer, DNA, openQCM Q-1, QCM, Quartz Crystal Microbalance
@article{lino2023development,
title = {Development of a QCM-based biosensor for the detection of non-small cell lung cancer biomarkers in liquid biopsies},
author = {Catarina Lino and Sara Barrias and Raquel Chaves and Filomena Adega and José Ramiro Fernandes and Paula Martins-Lopes},
url = {https://www.sciencedirect.com/science/article/pii/S0039914023003752},
doi = {https://doi.org/10.1016/j.talanta.2023.124624},
year = {2023},
date = {2023-05-04},
urldate = {2023-05-04},
journal = {Talanta},
pages = {124624},
publisher = {Elsevier},
abstract = {Lung cancer is the main malignant cancer reported worldwide, with one of the lowest survival rates. Deletions in the Epidermal Growth Factor Receptor (EGFR) gene are often associated with non-small cell lung cancer (NSCLC), a common subtype of lung cancer. The detection of such mutations provides key information for the diagnosis and treatment of the disease; therefore, the early screening of such biomarkers is of vital importance. The need for fast, reliable, and early detection means applied to NSCLC has led to the development of highly sensitive devices that can detect cancer-associated mutations. Such devices, known as biosensors, are a promising alternative to more conventional detection methods and can potentially alter the way cancer is diagnosed and treated. In this study, we report the development of a DNA-based biosensor, namely a quartz crystal microbalance (QCM), applied to the detection of NSCLC, from liquid biopsies samples. The detection, as is the case of most DNA biosensors, is based on the hybridization between the NSCLC-specific probe and the sample DNA (containing specific mutations associated with NSCLC). The surface functionalization was performed with a blocking agent (dithiothreitol) and thiolated-ssDNA strands. The biosensor was able to detect specific DNA sequences in both synthetic and real samples. Aspects such as reutilization and regeneration of the QCM electrode were also studied.},
key = {QCM, Quartz Crystal Microbalance, openQCM Q-1, DNA, cancer, biosensor, blood plasma},
keywords = {biosensors, blood plasma, Cancer, DNA, openQCM Q-1, QCM, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {article}
}
Bulut, Aliye; Temur, Betul Z; Kirimli, Ceyhun E; Gok, Ozgul; Balcioglu, Bertan K; Ozturk, Hasan U; Uyar, Neval Y; Kanlidere, Zeynep; Kocagoz, Tanil; Can, Ozge
A Novel Peptide-Based Detection of SARS-CoV-2 Antibodies Journal Article
In: Biomimetics, vol. 8, no. 1, pp. 89, 2023.
Abstract | Links | BibTeX | Tags: antibody detection, biosensors, peptide mimetics, QCM, Quartz Crystal Microbalance, SARS-CoV-2
@article{bulut2023novel,
title = {A Novel Peptide-Based Detection of SARS-CoV-2 Antibodies},
author = {Aliye Bulut and Betul Z Temur and Ceyhun E Kirimli and Ozgul Gok and Bertan K Balcioglu and Hasan U Ozturk and Neval Y Uyar and Zeynep Kanlidere and Tanil Kocagoz and Ozge Can},
url = {https://www.mdpi.com/2313-7673/8/1/89},
doi = {https://doi.org/10.3390/biomimetics8010089},
year = {2023},
date = {2023-02-22},
urldate = {2023-02-22},
journal = {Biomimetics},
volume = {8},
number = {1},
pages = {89},
publisher = {MDPI},
abstract = {The need for rapidly developed diagnostic tests has gained significant attention after the recent pandemic. Production of neutralizing antibodies for vaccine development or antibodies to be used in diagnostic tests usually require the usage of recombinant proteins representing the infectious agent. However, peptides that can mimic these recombinant proteins may be rapidly utilized, especially in emergencies such as the recent outbreak. Here, we report two peptides that mimic the receptor binding domain of the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and investigate their binding behavior against the corresponding human immunoglobulin G and immunoglobulin M (IgG and IgM) antibodies in a clinical sample using a quartz crystal microbalance (QCM) sensor. These peptides were immobilized on a QCM sensor surface, and their binding behavior was studied against a clinical serum sample that was previously determined to be IgG and IgM-positive. It was determined that designed peptides bind to SARS-CoV-2 antibodies in a clinical sample. These peptides might be useful for the detection of SARS-CoV-2 antibodies using different methods such as enzyme-linked immunosorbent assay (ELISA) or lateral flow assays. A similar platform might prove to be useful for the detection and development of antibodies in other infections.},
key = {peptide mimetics, SARS-CoV-2, biosensor, quartz crystal microbalance, antibody detection},
keywords = {antibody detection, biosensors, peptide mimetics, QCM, Quartz Crystal Microbalance, SARS-CoV-2},
pubstate = {published},
tppubtype = {article}
}
Xu, Jiexiong
Heavy Metal Detection Methods in Water using Quartz Crystal Microbalance PhD Thesis
Purdue University Graduate School, 2022.
Abstract | Links | BibTeX | Tags: biosensors, environment, ligand binding interactions, Quartz Crystal Microbalance, sensors
@phdthesis{xu2022heavy,
title = {Heavy Metal Detection Methods in Water using Quartz Crystal Microbalance},
author = {Jiexiong Xu},
url = {https://hammer.purdue.edu/articles/thesis/Heavy_Metal_Detection_Methods_in_Water_using_Quartz_Crystal_Microbalance/19684002},
doi = {https://doi.org/10.25394/PGS.19684002.v1},
year = {2022},
date = {2022-05-02},
urldate = {2022-01-01},
school = {Purdue University Graduate School},
abstract = {According to the World Health Organization, long-term exposures to heavy metal toxicants such as arsenic (As) and lead (Pb), even at the parts per billion (ppb, μg/L) level, can cause severe health problems such as cancer, skin lesions, and cardiovascular diseases. Therefore, an accurate and rapid heavy metal toxicant monitoring technique is needed. This research investigated the proof-of-the concept of a portable sensor for detecting As and Pb in water. The sensor system utilized a Quartz Crystal Microbalance - QCM (openQCM w-i2) system interfaced with a computer as the sensing platform. It was further integrated with a peristaltic pump and required tubing to create the integrated sensing system. It used a 10 MHz AT-cut quartz crystal gold electrode as the sensing substrate. For the determination of As in water, dithiothreitol (DTT) was used as the ligand to be deposited on the gold electrode using the Self-assembly-monolayer method (SAM). For the determination of Pb, a combination of ligands (Chitosan, Glutaraldehyde, and lead ionophore II - CGL) was used and deposited on the gold electrode using the spin-coating method. The system was tested for As in water with specific concentrations (0, 50, 100, and 200 ppb) under laboratory conditions. Similarly, the system was tested for Pb in water with different concentrations (0, 10, 25, 50, and 100 ppb) under laboratory conditions. The resulted change of frequency (with respect to time, in seconds) of the QCM system to different concentrations of the individual analyte was recorded. Subsequently, the recorded data were analyzed to determine the correlation model and coefficient of determination, R2. The maximum R2 values for detecting As and Pb were 0.963 and 0.991, respectively. Thus, this proof-of-the-concept study using the developed QCM-based sensing system for detecting As and Pb in water was successful.},
key = {Biosensor, ligand binding interactions, sensors, environment},
keywords = {biosensors, environment, ligand binding interactions, Quartz Crystal Microbalance, sensors},
pubstate = {published},
tppubtype = {phdthesis}
}
Wasilewski, Tomasz; Szulczy'nski, Bartosz; Dobrzyniewski, Dominik; Jakubaszek, Weronika; Gębicki, Jacek; Kamysz, Wojciech
Development and Assessment of Regeneration Methods for Peptide-Based QCM Biosensors in VOCs Analysis Applications Journal Article
In: Biosensors, vol. 12, no. 5, pp. 309, 2022.
Abstract | Links | BibTeX | Tags: biosensors, biosensors fabrication, peptides, plasma
@article{wasilewski2022development,
title = {Development and Assessment of Regeneration Methods for Peptide-Based QCM Biosensors in VOCs Analysis Applications},
author = {Tomasz Wasilewski and Bartosz Szulczy'nski and Dominik Dobrzyniewski and Weronika Jakubaszek and Jacek Gębicki and Wojciech Kamysz},
url = {https://pubmed.ncbi.nlm.nih.gov/35624609/},
doi = {10.3390/bios12050309},
year = {2022},
date = {2022-01-01},
urldate = {2022-01-01},
journal = {Biosensors},
volume = {12},
number = {5},
pages = {309},
publisher = {MDPI},
abstract = {Cleaning a quartz crystal microbalance (QCM) plays a crucial role in the regeneration of its biosensors for reuse. Imprecise removal of a receptor layer from a transducer's surface can lead to unsteady operation during measurements. This article compares three approaches to regeneration of the piezoelectric transducers using the electrochemical, oxygen plasma and Piranha solution methods. Optimization of the cleaning method allowed for evaluation of the influence of cleaning on the surface of regenerated biosensors. The effectiveness of cleaning the QCM transducers with a receptor layer in the form of a peptide with the KLLFDSLTDLKKKMSEC-NH2 sequence was described. Preliminary cleaning was tested for new electrodes to check the potential impact of the cleaning on deposition and the transducer's operation parameters. The effectiveness of the cleaning was assessed via the measurement of a resonant frequency of the QCM transducers. Based on changes in the resonant frequency and the Sauerbrey equation, it was possible to evaluate the changes in mass adsorption on the transducer's surface. Moreover, the morphology of the QCM transducer's surface subjected to the selected cleaning techniques was presented with AFM imaging. The presented results confirm that each method is suitable for peptide-based biosensors cleaning. However, the most invasive seems to be the Piranha method, with the greatest decrease in performance after regeneration cycles (25% after three cycles). The presented techniques were evaluated for their efficiency with respect to a selected volatile compound, which in the future should allow reuse of the biosensors in particular applications, contributing to cost reduction and extension of the sensors' lifetime.},
keywords = {biosensors, biosensors fabrication, peptides, plasma},
pubstate = {published},
tppubtype = {article}
}
Saffari, Zahra; Sepahi, Mina; Ahangari-Cohan, Reza; Khoobi, Mehdi; Hamidi-Fard, Mojtaba; Ghavidel, Amir; Aghasadeghi, Mohammad Reza; Norouzian, Dariush
A quartz crystal microbalance biosensor based on polyethylenimine-modified gold electrode to detect hepatitis B biomarker Journal Article
In: Analytical Biochemistry, pp. 114981, 2022.
Abstract | Links | BibTeX | Tags: biosensors, Hepatitis B Biomarker, Polyethylenimine, Quartz Crystal Microbalance
@article{saffari2022quartz,
title = {A quartz crystal microbalance biosensor based on polyethylenimine-modified gold electrode to detect hepatitis B biomarker},
author = {Zahra Saffari and Mina Sepahi and Reza Ahangari-Cohan and Mehdi Khoobi and Mojtaba Hamidi-Fard and Amir Ghavidel and Mohammad Reza Aghasadeghi and Dariush Norouzian},
url = {https://www.sciencedirect.com/science/article/abs/pii/S0003269722004419},
doi = {https://doi.org/10.1016/j.ab.2022.114981},
year = {2022},
date = {2022-01-01},
urldate = {2022-01-01},
journal = {Analytical Biochemistry},
pages = {114981},
publisher = {Elsevier},
abstract = {Biomarkers-based QCM-biosensors are suitable tools for the label-free detection of infectious diseases. In the current study, a QCM-biosensor was developed for the detection of HBsAg. Briefly, anti-HBsAg antibodies were covalently bound to the primary amines after PEI and thiolated-PEI surface modifications of gold-electrode. After RSM optimization, the statistical analysis revealed no significant difference between the immobilization yields of modified layers. Therefore, the PEI-modified QCM-biosensor was selected for further analysis. The PEI-surface was evaluated by FESEM, AFM, ATR-FTIR, and CA measurement. The surface hydrophilicity and its roughness were increased after PEI-coating. Also, FTIR confirmed the PEI-layering on the gold-surface. RSM optimization increased the antibody immobilization yield up to 80%. The QCM-biosensor showed noteworthy results with a wide dynamic range of 1–1 × 103 ng/mL, LOD of 3.14 ng/mL, LOQ of 9.52 ng/mL, and detection capability in human-sera, which were comparable with the ELISA. The mean accuracy of the QCM-biosensor was obtained at 91% when measured by the spike recovery test using human-sera. The biosensor was completely regenerated using 50 mM NaOH and 1% SDS. The benefits provided by the developed biosensor such as broad dynamic range, sensitivity, selectivity, stability, regenerate ability, and low cost suggest its potential application for the non-invasive and timely monitoring of HBV-biomarker.},
key = {Hepatitis B Biomarker, Biosensor, Quartz crystal microbalance, Polyethylenimine, Gold electrode},
keywords = {biosensors, Hepatitis B Biomarker, Polyethylenimine, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {article}
}
openQCM – Powered by Novaetech S.r.l