openQCM – Powered by Novaetech S.r.l
Publications citing the applications of openQCM (by Novaetech S.r.l.) instruments and accessories in scientific research.
The list of scientific papers published on the most important journals showing the usage of openQCM in several scientific fields, such as thin film deposition, chemical sensors, biological research and biosensors.
Because of the large number of publications, we are reorganizing everything by subject areas. This will take some time. Thank you for your patience
Lazarova, Katerina; Bozhilova, Silvia; Docheva, Martina; Pavlova, Ketrin; Alexieva, Gergana; Christova, Darinka; Babeva, Tsvetanka
Hygrosensitive Response and Characteristics of Copolymer Coatings with Potential for Humidity Monitoring Journal Article
In: Coatings, vol. 15, no. 8, 2025, ISSN: 2079-6412.
Abstract | Links | BibTeX | Tags: Copolymers, humidity, openQCM NEXT, optical sensing, QCM, Quartz Crystal Microbalance, Thin films
@article{coatings15080954,
title = {Hygrosensitive Response and Characteristics of Copolymer Coatings with Potential for Humidity Monitoring},
author = {Katerina Lazarova and Silvia Bozhilova and Martina Docheva and Ketrin Pavlova and Gergana Alexieva and Darinka Christova and Tsvetanka Babeva},
url = {https://www.mdpi.com/2079-6412/15/8/954},
doi = {10.3390/coatings15080954},
issn = {2079-6412},
year = {2025},
date = {2025-08-14},
urldate = {2025-01-01},
journal = {Coatings},
volume = {15},
number = {8},
abstract = {Newly developed hygrosensitive poly(vinyl alcohol) derivatives comprising grafted poly(N,N-dimethylacrylamide) chains of varied length and graft density are presented. The optical, sensing, and hydration properties of these copolymer thin films prepared by spin-coating were systematically studied. Refractive indices (n), absorption coefficients (k), and thicknesses (d) were calculated via curve fitting of the reflection spectra. Reflectance measurements across a relative humidity range of 5% to 95% were used to evaluate the humidity sensing behavior. Coating swelling exceeding 100% was observed. Hydration levels under high humidity conditions were studied using a quartz crystal microbalance method. This revealed approximately 24% water content in the polymer with the higher grafting density and shorter PDMA chains compared to around 31% in the copolymer with longer PDMA brushes that were loosely grafted The potential application of these copolymers as responsive materials for advanced humidity sensing is discussed. A combined optical and gravimetric approach for characterizing the humidity sensing properties of thin nanosized coatings is demonstrated, providing opportunities for advanced characterization of new functional materials, thus broadly contributing to the state of the art of sensor technologies.},
keywords = {Copolymers, humidity, openQCM NEXT, optical sensing, QCM, Quartz Crystal Microbalance, Thin films},
pubstate = {published},
tppubtype = {article}
}
Buksa, Hubert; Xie, Andi; Chan, Derek HH; Norvilaite, Oleta; Sanderson, George; Corrigan, Rebecca M; Armes, Steven P
Effect of Added Salt and Hydrophobic Comonomer on the Synthesis and Adsorption Behavior of Cationic Sterically-Stabilized Nanoparticles Journal Article
In: Langmuir, 2025.
Links | BibTeX | Tags: Dynamic Light Scattering, nanoparticles, openQCM NEXT, Precursors, QCM-D, RAFT polymerization, Salts
@article{buksa2025effect,
title = {Effect of Added Salt and Hydrophobic Comonomer on the Synthesis and Adsorption Behavior of Cationic Sterically-Stabilized Nanoparticles},
author = {Hubert Buksa and Andi Xie and Derek HH Chan and Oleta Norvilaite and George Sanderson and Rebecca M Corrigan and Steven P Armes},
url = {https://pubs.acs.org/doi/abs/10.1021/acs.langmuir.5c02575},
doi = {https://doi.org/10.1021/acs.langmuir.5c02575},
year = {2025},
date = {2025-08-01},
urldate = {2025-01-01},
journal = {Langmuir},
publisher = {ACS Publications},
keywords = {Dynamic Light Scattering, nanoparticles, openQCM NEXT, Precursors, QCM-D, RAFT polymerization, Salts},
pubstate = {published},
tppubtype = {article}
}
Bhalla, Nikhil; Song, Yeeun; Jo, Ju-Yeon; Lee, Doojin; Payam, Amir Farokh
Resolving Nanoslip, Solvation Inertia, and Charge Dynamics at Vibrating Solid–Liquid Interface Journal Article
In: Small, vol. n/a, no. n/a, pp. 2505067, 2025.
Abstract | Links | BibTeX | Tags: AFM, ionic-slip, ions-inertia, openQCM NEXT, QCM-D, solid-liquid-interface
@article{https://doi.org/10.1002/smll.202505067,
title = {Resolving Nanoslip, Solvation Inertia, and Charge Dynamics at Vibrating Solid–Liquid Interface},
author = {Nikhil Bhalla and Yeeun Song and Ju-Yeon Jo and Doojin Lee and Amir Farokh Payam},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.202505067},
doi = {https://doi.org/10.1002/smll.202505067},
year = {2025},
date = {2025-07-31},
journal = {Small},
volume = {n/a},
number = {n/a},
pages = {2505067},
abstract = {Abstract When a liquid contacts a charged solid surface, counterions in the liquid accumulate near the interface—a process traditionally described by models such as Helmholtz, Stern, and Debye-Hückel. However, these frameworks overlook the complex interplay between inertia and surface charge, and they simplify ions as mere point charges. This study employs vibrating solid surfaces to decouple and investigate the effects of inertia, ion-slipping, and electrostatic interactions at the molecular scale. This approach reveals “inertial layer” in the initial liquid strata, which plays a critical role in governing interface dynamics. Within this layer, a tunable Helmholtz zone is identified, where mechanical stiffness and electrostatic forces adjust in response to ion concentration. Beyond this lies a Debye screening region characterized by repulsive forces and electrostatic decoupling from the double-layer capacitor model. Using phosphate-buffered saline (PBS) as a model electrolyte, it is demonstrated that low ionic strength enhances interfacial stability, while high concentrations increase electrostatic repulsion, influencing nanoscale mechanical behavior. These insights refine the understanding of interfacial phenomena and hold significant implications for biosensing, catalysis, and energy storage technologies.},
keywords = {AFM, ionic-slip, ions-inertia, openQCM NEXT, QCM-D, solid-liquid-interface},
pubstate = {published},
tppubtype = {article}
}
Berisha, A. P.; Mykhaylyk, O. O.; Armes, S. P.; Ambarkar, A.; Malde, C.
Determination of Both Wet and Dry Mass of Water-Soluble Polymers Adsorbed on Planar Silica Using a Quartz Crystal Microbalance Journal Article
In: Langmuir, vol. 0, no. 0, pp. null, 2025, (PMID: 40587480).
Abstract | Links | BibTeX | Tags: Adsorption, nanoparticles, openQCM NEXT, polymers, QCM-D, Quartz Crystal Microbalance (QCM), sensors, Silica
@article{doi:10.1021/acs.langmuir.5c01380,
title = {Determination of Both Wet and Dry Mass of Water-Soluble Polymers Adsorbed on Planar Silica Using a Quartz Crystal Microbalance},
author = {A. P. Berisha and O. O. Mykhaylyk and S. P. Armes and A. Ambarkar and C. Malde},
url = {https://doi.org/10.1021/acs.langmuir.5c01380},
doi = {10.1021/acs.langmuir.5c01380},
year = {2025},
date = {2025-06-30},
urldate = {2025-06-30},
journal = {Langmuir},
volume = {0},
number = {0},
pages = {null},
abstract = {It is well-established that polymer adsorption at a model planar interface can be studied using a quartz crystal microbalance (QCM). Normally, this technique reports both the adsorbed mass of polymer chains plus any bound or entrained solvent molecules. Thus the total adsorbed amount significantly exceeds that reported by optical reflectometry or determined from adsorption isotherms obtained for colloidal substrates using a supernatant depletion assay. Herein we report a new QCM approach whereby the dry adsorbed amount, Γdry, is obtained directly from the wet (solvated) adsorbed amount, Γwet, by switching from a liquid flow to a flow of nitrogen gas. The latter conditions lead to complete removal of the solvent, leaving only the desolvated adsorbed polymer chains. This strategy is exemplified for the adsorption of two well-known nonionic water-soluble polymers, poly(ethylene glycol) (PEG) and poly(N-vinylpyrrolidone) (PNVP), from aqueous solution onto a model planar substrate (silica). These two systems were selected to facilitate direct comparison with the literature, which validates this new approach.},
note = {PMID: 40587480},
keywords = {Adsorption, nanoparticles, openQCM NEXT, polymers, QCM-D, Quartz Crystal Microbalance (QCM), sensors, Silica},
pubstate = {published},
tppubtype = {article}
}
Reichert, Per; Malhotra, Jaskaran Singh; Krishnan, Deepthy; Evli, Sinem; Yamunan, Srihari; Duarte, Clara Davila; Kubus, Mariusz; Sundberg, Jonas
Surface-mounted metal-organic framework for the adsorption and sensing of monoaromatic pollutants in water Journal Article
In: 2025.
Abstract | Links | BibTeX | Tags: BTEX sensor, Chemical sensing, metal-organic frameworks, openQCM NEXT, QCM-D, Quartz Crystal Microbalance, Water pollution
@article{reichert2025surface,
title = {Surface-mounted metal-organic framework for the adsorption and sensing of monoaromatic pollutants in water},
author = {Per Reichert and Jaskaran Singh Malhotra and Deepthy Krishnan and Sinem Evli and Srihari Yamunan and Clara Davila Duarte and Mariusz Kubus and Jonas Sundberg},
url = {https://chemrxiv.org/engage/chemrxiv/article-details/682c3a413ba0887c33d44494},
doi = {https://doi.org/10.26434/chemrxiv-2025-93k50},
year = {2025},
date = {2025-05-26},
urldate = {2025-05-26},
abstract = {The increase in environmental pollution from industrial and anthropogenic activities, particularly toxic and persistent pollutants, is becoming an increasing threat to our access to clean water. While laboratory-based analytical techniques offer high sensitivity, their cost and time requirements limit spatial and temporal resolution for effective environmental monitoring. This highlights the critical need for technically advanced, yet simple-to-operate sensors suitable for field deployment. Specifically, the detection of water-dissolved pollutants is challenging due to the high propensity of water molecules to interact with sensor materials, obstructing the detection mechanism. One class of highly water-soluble pollutants are benzene, toluene, ethylbenzene and xylene isomers (collectively referred to as BTEX). These compounds are prevalent specifically in fossil fuels and are therefore often found in areas surrounding processing and storage facilities. Due to their relatively high water solubility, they have a high propensity to migrate and transport to the groundwater. Porous metal-organic frameworks have shown promise for separation technology, including as analyte-receptors in adsorption-based sensing. We hypothesized that a hydrophobic MOF with pore dimensions similar to the BTEX molecules would selectively partition these analytes from water. In our study, we have specifically investigated UHMOF-100, a material previously shown to be highly water-repellent with narrow pores hypothesized to selectively adsorb non-polar compounds. Bulk adsorption experiments confirmed the ability of UHMOF-100 to rapidly adsorb BTEX from water, demonstrating high mass capacities (up to 402 mg g⁻¹) influenced by a complex interplay of water solubility, molecular size, and guest–host interactions. Building upon this, we developed a method for fabricating robust UHMOF-100 thin films on commercial quartz crystal microbalance (QCM) resonators using a layer-by-layer deposition technique. The sensor morphology, crystallite size and density have been characterized using a combination of imaging, spectroscopic and diffraction techniques. The functionalized QCM sensors successfully detected individual BTEX species spiked in water within the concentration range of 0-50 mg L¹. Quantifiable responses were observed at concentrations as low as 5 mg L⁻¹, with sensitivities ranging from 2.04 to 4.59 Hz / mg L⁻¹. The sensors showed low cross-sensitivity towards more polar environmental contaminants such as phenol and benzoic acid, and a limited response to naphthalene, validating a degree of selective interaction with the target BTEX molecules. Furthermore, the UHMOF-100 films demonstrated both chemical stability in water and mechanical robustness under continuous flow conditions over extended measurement periods. This work presents, to our knowledge, the first example of a MOF-based QCM sensor for the detection of BTEX in water, demonstrating the potential of suitably designed porous materials for addressing challenging aqueous sensing applications.},
keywords = {BTEX sensor, Chemical sensing, metal-organic frameworks, openQCM NEXT, QCM-D, Quartz Crystal Microbalance, Water pollution},
pubstate = {published},
tppubtype = {article}
}
Hudzik, Emilia M.; Parnell, Andrew J.; Petkov, Jordan; Geoghegan, Mark
Quartz crystal microbalance experiments reveal structural changes in the Staphylococcus aureus biofilm in the presence of savirin Journal Article
In: Results in Surfaces and Interfaces, pp. 100535, 2025, ISSN: 2666-8459.
Abstract | Links | BibTeX | Tags: Biofilm, openQCM NEXT, QCM-D, quartz-crystal microbalance, Quorum sensing inhibitor, Staphylococcus aureus
@article{HUDZIK2025100535,
title = {Quartz crystal microbalance experiments reveal structural changes in the Staphylococcus aureus biofilm in the presence of savirin},
author = {Emilia M. Hudzik and Andrew J. Parnell and Jordan Petkov and Mark Geoghegan},
url = {https://www.sciencedirect.com/science/article/pii/S2666845925001229},
doi = {https://doi.org/10.1016/j.rsurfi.2025.100535},
issn = {2666-8459},
year = {2025},
date = {2025-04-21},
urldate = {2025-01-01},
journal = {Results in Surfaces and Interfaces},
pages = {100535},
abstract = {ABSTRACT
Quartz-crystal microbalance with dissipation (QCM-D) experiments show that green-fluorescent protein labelled Staphylococcus aureus adsorption to a gold QCM electrode is similar for a certain incubation period (here, 6 h) in the presence and absence of the quorum sensing inhibitor, savirin. After this period, cells continue to adsorb in the absence of savirin, but in its presence biofilm formation is severely compromised, with significant changes in the viscoelastic properties of the layer being observed.},
keywords = {Biofilm, openQCM NEXT, QCM-D, quartz-crystal microbalance, Quorum sensing inhibitor, Staphylococcus aureus},
pubstate = {published},
tppubtype = {article}
}
Bradley, Zoe; Bhalla, Nikhil
Plasmonic Geometry-Induced Viscoelastic Biocomplex Formation with Optical Concealment, Liquid Slips, and Soundscapes in Bioassays Journal Article
In: Analytical Chemistry, vol. 0, no. 0, pp. null, 2025, (PMID: 40131300).
Abstract | Links | BibTeX | Tags: Liquids, Mathematical methods, Metal nanoparticles, openQCM NEXT, Peptides and proteins, QCM-D, sensors
@article{doi:10.1021/acs.analchem.4c04859,
title = {Plasmonic Geometry-Induced Viscoelastic Biocomplex Formation with Optical Concealment, Liquid Slips, and Soundscapes in Bioassays},
author = {Zoe Bradley and Nikhil Bhalla},
url = {https://doi.org/10.1021/acs.analchem.4c04859},
doi = {10.1021/acs.analchem.4c04859},
year = {2025},
date = {2025-03-25},
journal = {Analytical Chemistry},
volume = {0},
number = {0},
pages = {null},
abstract = {Plasmonic nanoparticles (NPs), typically made up of gold or silver, are widely used in point-of-care bio- and chemical sensing due to their role in enhancing detection sensitivity. Key NP properties influencing sensing performance include the material type, NP size, and geometry. While much research has focused on material and size optimization, less attention has been given to understand NP geometry effects and interactions with biomolecules involved in the bioassay. In this context, we investigate the interfacial properties of the biocomplex formed by spherical-shaped gold nanoparticles (AuNPs) and gold nanostars (AuNSts) during a sandwich assay using localized surface plasmon resonance (LSPR) and quartz crystal microbalance with dissipation (QCM-D). The chosen model to study the biocomplex specifically detects interleukin-6 (IL-6). Our results show that AuNSts, with their anisotropic shape and higher surface area, form antibody–antigen complexes more effectively than AuNPs. AuNSts also create a softer, more hydrated layer due to their complex geometry, which leads to larger liquid slips. Lastly, we showed that AuNSts avoid optical concealment at high IL-6 concentrations, unlike AuNPs, making them more reliable for detecting a wider range of concentrations. These findings highlight the importance of optimizing NP geometry for improved bio/chemical sensor performance.},
note = {PMID: 40131300},
keywords = {Liquids, Mathematical methods, Metal nanoparticles, openQCM NEXT, Peptides and proteins, QCM-D, sensors},
pubstate = {published},
tppubtype = {article}
}
Malhotra, Jaskaran Singh; Duarte, Clara Dávila; Reichert, Per; Krishnan, Deepthy; Sundberg, Jonas
Quantification of Methane in Water at Parts Per Billion Sensitivity Using a Metal–Organic Framework-Functionalized Quartz Crystal Resonator Journal Article
In: ACS Applied Nano Materials, 2025.
Abstract | Links | BibTeX | Tags: chemical sensors, greenhouse gas emissions, hydrocarbons, Metal organic frameworks, methane monitoring, openQCM NEXT, QCM, Quartz Crystal Microbalance, Thin films, wetlands
@article{malhotra2025quantification,
title = {Quantification of Methane in Water at Parts Per Billion Sensitivity Using a Metal–Organic Framework-Functionalized Quartz Crystal Resonator},
author = {Jaskaran Singh Malhotra and Clara Dávila Duarte and Per Reichert and Deepthy Krishnan and Jonas Sundberg},
url = {https://pubs.acs.org/doi/abs/10.1021/acsanm.4c06883},
doi = {https://doi.org/10.1021/acsanm.4c06883},
year = {2025},
date = {2025-02-26},
urldate = {2025-02-26},
journal = {ACS Applied Nano Materials},
publisher = {ACS Publications},
abstract = {Wetlands and water bodies are essential sources of methane emissions, a greenhouse gas that is roughly 25 times more potent than carbon dioxide. However, the biological production, fluxes, and interplay between methane and carbon dioxide due to microbial activity must be better understood. This is primarily attributed to the lack of sensor technology to provide the required spatial and temporal resolution. Herein, we demonstrate how a porous metal–organic framework material can create a sensor to quantify dissolved methane. The sensor is based on a quartz crystal microbalance, which measures methane adsorption using a quartz resonator functionalized with the material. Combining the quartz crystal microbalance and the nanoporous material yields fast response times and high sensitivity. This is due to a favorable partitioning coefficient between the empty pores of the material and the aqueous phase, promoting rapid migration of dissolved methane into the material. The result is a sensor system that achieves equilibration and response times under 60 s with parts per billion sensitivity. The high sensor performance is based on microporous pore size distribution, surface hydrophobicity, and crystallite size, yielding strong synergy. A fully functioning prototype has been designed, built, and evaluated to demonstrate real-life applicability and obtain a response from methane-spiked lake water. The modular nature of metal–organic frameworks opens possibilities for creating materials for selective sensing of other aqueous species. Thus, our study showcases the importance of materials for methane sensing and environmental monitoring in general.},
keywords = {chemical sensors, greenhouse gas emissions, hydrocarbons, Metal organic frameworks, methane monitoring, openQCM NEXT, QCM, Quartz Crystal Microbalance, Thin films, wetlands},
pubstate = {published},
tppubtype = {article}
}
Hunter, Saul J; Csányi, Evelin; Tyler, Joshua JS; Newell, Mark A; Farmer, Matthew AH; Ma, Camery; Sanderson, George; Leggett, Graham J; Johnson, Edwin C; Armes, Steven P
Covalent Capture of Nanoparticle-Stabilized Oil Droplets via Acetal Chemistry Using a Hydrophilic Polymer Brush Journal Article
In: Langmuir, 2024.
Abstract | Links | BibTeX | Tags: Adsorption, lipids, Liquids, Nanoemulsions, nanoparticles, openQCM NEXT, QCM, QCM-D, Quartz Crystal Microbalance
@article{hunter2024covalent,
title = {Covalent Capture of Nanoparticle-Stabilized Oil Droplets via Acetal Chemistry Using a Hydrophilic Polymer Brush},
author = {Saul J Hunter and Evelin Csányi and Joshua JS Tyler and Mark A Newell and Matthew AH Farmer and Camery Ma and George Sanderson and Graham J Leggett and Edwin C Johnson and Steven P Armes},
url = {https://pubs.acs.org/doi/full/10.1021/acs.langmuir.4c03897},
doi = {https://doi.org/10.1021/acs.langmuir.4c03897},
year = {2024},
date = {2024-12-06},
urldate = {2024-01-01},
journal = {Langmuir},
publisher = {ACS Publications},
abstract = {We report the capture of nanosized oil droplets using a hydrophilic aldehyde-functional polymer brush. The brush was obtained via aqueous ARGET ATRP of a cis-diol-functional methacrylic monomer from a planar silicon wafer. This precursor was then selectively oxidized using an aqueous solution of NaIO4 to introduce aldehyde groups. The oil droplets were prepared by using excess sterically stabilized diblock copolymer nanoparticles to prepare a relatively coarse squalane-in-water Pickering emulsion (mean droplet diameter = 20 μm). This precursor was then further processed via high-pressure microfluidization to produce ∼200 nm squalane droplets. We demonstrate that adsorption of these nanosized oil droplets involves acetal bond formation between the cis-diol groups located on the steric stabilizer chains and the aldehyde groups on the brush. This interaction occurs under relatively mild conditions and can be tuned by adjusting the solution pH. Hence this is a useful model system for understanding oil droplet interactions with soft surfaces.},
keywords = {Adsorption, lipids, Liquids, Nanoemulsions, nanoparticles, openQCM NEXT, QCM, QCM-D, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {article}
}
Dattilo, Marco; Patitucci, Francesco; Motta, Marisa Francesca; Prete, Sabrina; Galeazzi, Roberta; Franzè, Silvia; Perrotta, Ida; Cavarelli, Mariangela; Parisi, Ortensia Ilaria; Puoci, Francesco
In: Colloids and Surfaces B: Biointerfaces, pp. 114408, 2024, ISSN: 0927-7765.
Abstract | Links | BibTeX | Tags: Emulsion Polymerization, Molecular Recognition, Molecularly Imprinted Polymers (MIPs), Omicron Variant, openQCM NEXT, QCM, Quartz Crystal Microbalance, SARS-CoV-2, Spike Protein Receptor-Binding Domain (RBD)
@article{DATTILO2024114408,
title = {Molecularly Imprinted Polymers (MIPs) for SARS-CoV-2 Omicron variant inhibition: an alternative approach to address the challenge of emerging zoonoses},
author = {Marco Dattilo and Francesco Patitucci and Marisa Francesca Motta and Sabrina Prete and Roberta Galeazzi and Silvia Franzè and Ida Perrotta and Mariangela Cavarelli and Ortensia Ilaria Parisi and Francesco Puoci},
url = {https://www.sciencedirect.com/science/article/pii/S0927776524006672},
doi = {https://doi.org/10.1016/j.colsurfb.2024.114408},
issn = {0927-7765},
year = {2024},
date = {2024-11-26},
urldate = {2024-01-01},
journal = {Colloids and Surfaces B: Biointerfaces},
pages = {114408},
abstract = {ABSTRACT
Emerging zoonoses pose significant public health risks and necessitate rapid and effective treatment responses. This study enhances the technology for preparing Molecularly Imprinted Polymers (MIPs), which function as synthetic nanoparticles targeting SARS-CoV-2 receptor-binding domain (RBD), specifically the Omicron variant, thereby inhibiting its function. This study builds on previous findings by introducing precise adjustments in the formulation and process conditions to enhance particle stability and ensure better control over size and distribution, thereby overcoming the issues identified in earlier research. Following docking studies, imprinted nanoparticles were synthesized via inverse microemulsion polymerization and characterized in terms of size, morphology and surface charge. The selective recognition properties and ability of MIPs to obstruct the interaction between ACE2 and the RBD of SARS-CoV-2 were assessed in vitro, using Non-Imprinted Polymers (NIPs) as controls, and rebinding studies were conducted utilizing a Quartz Crystal Microbalance with Dissipation monitoring (QCM-D). The synthesized nanoparticles exhibited uniform dispersion and had a consistent diameter within the nanoscale range. MIPs demonstrated significant recognition properties and exhibited a concentration-dependent ability to reduce RBD binding to ACE2 without cytotoxic or sensitizing effects. MIPs-based platforms offer a promising alternative to natural antibodies for treating SARS-CoV-2 infections, therefore representing a versatile platform for managing emerging zoonoses.},
keywords = {Emulsion Polymerization, Molecular Recognition, Molecularly Imprinted Polymers (MIPs), Omicron Variant, openQCM NEXT, QCM, Quartz Crystal Microbalance, SARS-CoV-2, Spike Protein Receptor-Binding Domain (RBD)},
pubstate = {published},
tppubtype = {article}
}
Jana, Saikat; Bhalla, Nikhil
Acoustic Fingerprinting and Nanoslip Dynamics of Biofilms Journal Article
In: Advanced Functional Materials, vol. n/a, no. n/a, pp. 2414687, 2024.
Abstract | Links | BibTeX | Tags: acoustics, bacteria-music, biofilms, mutation, openQCM NEXT, QCM-D, Quartz Crystal Microbalance, vibrating-solids
@article{https://doi.org/10.1002/adfm.202414687,
title = {Acoustic Fingerprinting and Nanoslip Dynamics of Biofilms},
author = {Saikat Jana and Nikhil Bhalla},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202414687},
doi = {https://doi.org/10.1002/adfm.202414687},
year = {2024},
date = {2024-11-12},
journal = {Advanced Functional Materials},
volume = {n/a},
number = {n/a},
pages = {2414687},
abstract = {Abstract It is reported that bacteria can generate nanomotion, but understanding the complex dynamics of bacterial colony gliding on solid interfaces has remained unresolved. Here, this work captures the real-time development and gliding of bacterial biofilms on vibrating solids made of piezoelectric quartz. The gliding, characterized by liquid slips, is measured in form of frequency and dissipation changes of the vibrating solid. These vibrations enable the generation of distinct acoustic fingerprints (sound/ music) of the three phases of biofilm development: viscoelastic strengthening, biofilm growth and biofilm stability. In adition, the effect of extracellular matrix secretion on the rigidity of the film and its nanoslip in each of the distinct biofilm developmental phases is quantified. This work provides a real-time, label-free method of quantifying bacteria biofilm dynamics and paves the way for developing libraries of acoustic signatures of bacteria and their metabolic products.},
keywords = {acoustics, bacteria-music, biofilms, mutation, openQCM NEXT, QCM-D, Quartz Crystal Microbalance, vibrating-solids},
pubstate = {published},
tppubtype = {article}
}
Karchilakis, Georgios; Varlas, Spyridon; Johnson, Edwin C; Norvilaite, Oleta; Farmer, Matthew AH; Sanderson, George; Leggett, Graham J; Armes, Steven P
Capturing Enzyme-Loaded Diblock Copolymer Vesicles Using an Aldehyde-Functionalized Hydrophilic Polymer Brush Journal Article
In: Langmuir, 2024.
Abstract | Links | BibTeX | Tags: Adsorption, openQCM NEXT, peptides, proteins, QCM-D, Quartz Crystal Microbalance, RAFT polymerization, Thickness, Vesicles
@article{karchilakis2024capturing,
title = {Capturing Enzyme-Loaded Diblock Copolymer Vesicles Using an Aldehyde-Functionalized Hydrophilic Polymer Brush},
author = {Georgios Karchilakis and Spyridon Varlas and Edwin C Johnson and Oleta Norvilaite and Matthew AH Farmer and George Sanderson and Graham J Leggett and Steven P Armes},
url = {https://pubs.acs.org/doi/full/10.1021/acs.langmuir.4c01561},
doi = {https://doi.org/10.1021/acs.langmuir.4c01561},
year = {2024},
date = {2024-06-27},
urldate = {2024-06-27},
journal = {Langmuir},
publisher = {ACS Publications},
abstract = {Compared to lipids, block copolymer vesicles are potentially robust nanocontainers for enzymes owing to their enhanced chemical stability, particularly in challenging environments. Herein we report that cis-diol-functional diblock copolymer vesicles can be chemically adsorbed onto a hydrophilic aldehyde-functional polymer brush via acetal bond formation under mild conditions (pH 5.5, 20 °C). Quartz crystal microbalance studies indicated an adsorbed amount, Γ, of 158 mg m–2 for vesicle adsorption onto such brushes, whereas negligible adsorption (Γ = 0.1 mg m–2) was observed for a control experiment conducted using a cis-diol-functionalized brush. Scanning electron microscopy and ellipsometry studies indicated a mean surface coverage of around 30% at the brush surface, which suggests reasonably efficient chemical adsorption. Importantly, such vesicles can be conveniently loaded with a model enzyme (horseradish peroxidase, HRP) using an aqueous polymerization-induced self-assembly formulation. Moreover, the immobilized vesicles remained permeable toward small molecules while retaining their enzyme payload. The enzymatic activity of such HRP-loaded vesicles was demonstrated using a well-established colorimetric assay. In principle, this efficient vesicle-on-brush strategy can be applied to a wide range of enzymes and functional proteins for the design of next-generation immobilized nanoreactors for enzyme-mediated catalysis.},
keywords = {Adsorption, openQCM NEXT, peptides, proteins, QCM-D, Quartz Crystal Microbalance, RAFT polymerization, Thickness, Vesicles},
pubstate = {published},
tppubtype = {article}
}
Buksa, Hubert; Johnson, Edwin C; Chan, Derek HH; McBride, Rory J; Sanderson, George; Corrigan, Rebecca M; Armes, Steven P
Arginine-Functional Methacrylic Block Copolymer Nanoparticles: Synthesis, Characterization, and Adsorption onto a Model Planar Substrate Journal Article
In: Biomacromolecules, 2024.
Abstract | Links | BibTeX | Tags: aldehyde-functional, nanoparticles, openQCM NEXT, polymers, QCM, QCM-D, Quartz Crystal Microbalance
@article{buksa2024arginine,
title = {Arginine-Functional Methacrylic Block Copolymer Nanoparticles: Synthesis, Characterization, and Adsorption onto a Model Planar Substrate},
author = {Hubert Buksa and Edwin C Johnson and Derek HH Chan and Rory J McBride and George Sanderson and Rebecca M Corrigan and Steven P Armes},
url = {https://pubs.acs.org/doi/10.1021/acs.biomac.4c00128?goto=supporting-info},
doi = {https://pubs.acs.org/doi/10.1021/acs.biomac.4c00128?goto=supporting-info},
year = {2024},
date = {2024-05-02},
urldate = {2024-05-02},
journal = {Biomacromolecules},
publisher = {ACS Publications},
abstract = {Recently, we reported the synthesis of a hydrophilic aldehyde-functional methacrylic polymer (Angew. Chem., 2021, 60, 12032–12037). Herein we demonstrate that such polymers can be reacted with arginine in aqueous solution to produce arginine-functional methacrylic polymers without recourse to protecting group chemistry. Careful control of the solution pH is essential to ensure regioselective imine bond formation; subsequent reductive amination leads to a hydrolytically stable amide linkage. This new protocol was used to prepare a series of arginine-functionalized diblock copolymer nanoparticles of varying size via polymerization-induced self-assembly in aqueous media. Adsorption of these cationic nanoparticles onto silica was monitored using a quartz crystal microbalance. Strong electrostatic adsorption occurred at pH 7 (Γ = 14.7 mg m–2), whereas much weaker adsorption occurred at pH 3 (Γ = 1.9 mg m–2). These findings were corroborated by electron microscopy, which indicated a surface coverage of 42% at pH 7 but only 5% at pH 3},
keywords = {aldehyde-functional, nanoparticles, openQCM NEXT, polymers, QCM, QCM-D, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {article}
}
Astier, Samuel; Johnson, Edwin C; Norvilaite, Oleta; Varlas, Spyridon; Brotherton, Emma E; Sanderson, George; Leggett, Graham J; Armes, Steven P
Controlling Adsorption of Diblock Copolymer Nanoparticles onto an Aldehyde-Functionalized Hydrophilic Polymer Brush via pH Modulation Journal Article
In: Langmuir, 2024.
Abstract | Links | BibTeX | Tags: Adsorption, Copolymers, nanoparticles, openQCM NEXT, QCM-D, Silicon, Solution chemistry
@article{astier2024controlling,
title = {Controlling Adsorption of Diblock Copolymer Nanoparticles onto an Aldehyde-Functionalized Hydrophilic Polymer Brush via pH Modulation},
author = {Samuel Astier and Edwin C Johnson and Oleta Norvilaite and Spyridon Varlas and Emma E Brotherton and George Sanderson and Graham J Leggett and Steven P Armes},
url = {https://pubs.acs.org/doi/full/10.1021/acs.langmuir.3c03392},
doi = {https://doi.org/10.1021/acs.langmuir.3c03392},
year = {2024},
date = {2024-02-06},
urldate = {2024-02-06},
journal = {Langmuir},
publisher = {ACS Publications},
abstract = {Sterically stabilized diblock copolymer nanoparticles with a well-defined spherical morphology and tunable diameter were prepared by RAFT aqueous emulsion polymerization of benzyl methacrylate at 70 °C. The steric stabilizer precursor used for these syntheses contained pendent cis-diol groups, which means that such nanoparticles can react with a suitable aldehyde-functional surface via acetal bond formation. This principle is examined herein by growing an aldehyde-functionalized polymer brush from a planar silicon wafer and studying the extent of nanoparticle adsorption onto this model substrate from aqueous solution at 25 °C using a quartz crystal microbalance (QCM). The adsorbed amount, Γ, depends on both the nanoparticle diameter and the solution pH, with minimal adsorption observed at pH 7 or 10 and substantial adsorption achieved at pH 4. Variable-temperature QCM studies provide strong evidence for chemical adsorption, while scanning electron microscopy images recorded for the nanoparticle-coated brush surface after drying indicate mean surface coverages of up to 62%. This fundamental study extends our understanding of the chemical adsorption of nanoparticles on soft substrates.},
keywords = {Adsorption, Copolymers, nanoparticles, openQCM NEXT, QCM-D, Silicon, Solution chemistry},
pubstate = {published},
tppubtype = {article}
}
Wood, Amelia C; Johnson, Edwin C; Prasad, Ram RR; Sullivan, Mark V; Turner, Nicholas W; Armes, Steven P; Staniland, Sarah S; Foster, Jonathan A
Phage display against two-dimensional metal-organic nanosheets as a new route to highly selective biomolecular recognition surfaces Journal Article
In: 2023.
Abstract | Links | BibTeX | Tags: Biopanning, Metal-organic framwork nanosheets (MONs), openQCM NEXT, peptide, Phage display, Sensing, two-dimensional materials
@article{wood2023phage,
title = {Phage display against two-dimensional metal-organic nanosheets as a new route to highly selective biomolecular recognition surfaces},
author = {Amelia C Wood and Edwin C Johnson and Ram RR Prasad and Mark V Sullivan and Nicholas W Turner and Steven P Armes and Sarah S Staniland and Jonathan A Foster},
url = {https://chemrxiv.org/engage/chemrxiv/article-details/6570ea7c29a13c4d47ce600d},
doi = {https://doi.org/10.26434/chemrxiv-2023-6dhn7},
year = {2023},
date = {2023-12-08},
urldate = {2023-12-08},
abstract = {Peptides are important biomarkers for a range of diseases, however distinguishing different amino-acid sequences using artificial receptors remains a major challenge in biomedical sensing. Here we present a new approach to creating highly selective recognition surfaces using phage display biopanning against metal-organic nanosheets (MONs) and demonstrate their use as the next-generation of biomolecular recognition surfaces. Three MONs (ZIF-7, ZIF-7-NH2 and Hf-BTB-NH2) were chosen as initial targets to demonstrate how simple synthetic modifications can enhance selectivity towards specific amino acid sequences. Each MON system was added to a solution containing every possible combination of 7-residue peptides attached to bacteriophage hosts and the highest affinity binding peptides for each system was identified via successive biopanning rounds. In each case only a single peptide sequence was isolated (YNYRNLL – ZIF-7, NNWWAPA – ZIF-7-NH2 and FTVRDLS – Hf-BTB-NH2). This indicates that these MONs are highly selective, which is attributed to their 2D nanosheet structure. Zeta potential and contact angle measurements were conducted on each MON and combined with calculated properties for the peptide sequences and binding studies to provide insights into the relative importance of electrostatic, hydrophobic and co-ordination bonding interactions. A quartz crystal microbalance (QCM) was used to model phage binding and the Hf-BTB-NH2 MON coated QCM produced a 5-fold higher signal for FTVRDLS functionalised phage compared to phage with generic peptide sequences. Further studies focusing on Hf-BTB-NH2 confirmed that the VRDL sequence was highly conserved, and on-target binding exhibited equilibrium dissociation constants that are comparable to natural recognition materials. Surface plasmon resonance (SPR) studies indicated a 4600-fold higher equilibrium dissociation constant (KD) for FTVRDLS compared to those obtained for off-target sequences, comparable to those of antibodies (KD = 4 x10-10). We anticipate that the highly tunable nature of MONs will enhance our understanding of binding interactions and enable molecular recognition of biomedically important peptides.},
keywords = {Biopanning, Metal-organic framwork nanosheets (MONs), openQCM NEXT, peptide, Phage display, Sensing, two-dimensional materials},
pubstate = {published},
tppubtype = {article}
}
Milsom, Adam; Qi, Shaojun; Mishra, Ashmi; Berkemeier, Thomas; Zhang, Zhenyu; Pfrang, Christian
In: EGUsphere, vol. 23, iss. 19, pp. 10835–10843, 2023.
Abstract | Links | BibTeX | Tags: aerosol, Dissipation Monitoring, films, openQCM NEXT, Ozone, pollutants, pollution, QCM, QCM-D, Quartz Crystal Microbalance
@article{milsom2023situ,
title = {In-situ measurements and modelling of the oxidation kinetics in films of a cooking aerosol proxy using a Quartz Crystal Microbalance with Dissipation monitoring (QCM-D)},
author = {Adam Milsom and Shaojun Qi and Ashmi Mishra and Thomas Berkemeier and Zhenyu Zhang and Christian Pfrang},
url = {https://acp.copernicus.org/articles/23/10835/2023/},
doi = {https://doi.org/10.5194/acp-23-10835-2023},
year = {2023},
date = {2023-10-04},
urldate = {2023-10-04},
journal = {EGUsphere},
volume = {23},
issue = {19},
pages = {10835–10843},
publisher = {Copernicus Publications Göttingen, Germany},
abstract = {Aerosols and films are found in indoor and outdoor environments. How they interact with pollutants, such as ozone, has a direct impact on our environment via cloud droplet formation and the chemical persistence of toxic aerosol constituents. The chemical reactivity of aerosol emissions is typically measured spectroscopically or by techniques such as mass spectrometry, directly monitoring the amount of material during a chemical reaction. We present a study which indirectly measures oxidation kinetics in a common cooking aerosol proxy using a low-cost quartz crystal microbalance with dissipation monitoring (QCM-D). We validated this approach by comparison with kinetics measured both spectroscopically and with high-intensity synchrotron radiation. Using microscopy, we found that the film morphology changed and film rigidity increased during oxidation. There was evidence of surface crust formation on oxidised particles, though this was not consistent for all experiments. Crucially, our kinetic modelling of these experimental data confirmed that the oleic acid decay rate is in line with previous literature determinations, which demonstrates that performing such experiments on a QCM-D does not alter the underlying mechanism. There is clear potential to take this robust and low-cost but sensitive method to the field for in situ monitoring of reactions outdoors and indoors.},
keywords = {aerosol, Dissipation Monitoring, films, openQCM NEXT, Ozone, pollutants, pollution, QCM, QCM-D, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {article}
}
Zholdassov, Yerzhan
Kinetics of Photochemical and Mechanochemical Organic Reactions on Surface Journal Article
In: 2023.
Abstract | Links | BibTeX | Tags: mechanochemistry, openQCM, openQCM NEXT, photochemistry, QCM-D, surface chemistry
@article{zholdassov2023kinetics,
title = {Kinetics of Photochemical and Mechanochemical Organic Reactions on Surface},
author = {Yerzhan Zholdassov},
url = {https://academicworks.cuny.edu/gc_etds/5476/},
year = {2023},
date = {2023-09-01},
urldate = {2023-09-01},
abstract = {Solvents used in traditional chemical processes account for a large percentage of reaction mass and waste and can pose significant environmental and health risks. The environmentally friendly nature of mechanochemistry, in addition to other benefits, makes it a promising approach for sustainable chemistry over traditional solvent-based methods. However, it is still not a widely adopted method for performing chemical reactions on an industrial scale. This is partially due to the significant challenge associated with understanding the reaction kinetics under mechanochemical conditions. Many variations of scanning probe lithography (SPL) techniques are able to manipulate the organic molecules with precise control over force and position on surfaces, which offer unique opportunity to investigate the mechanochemical reactions at molecular level. Chapter 1 gives a review on recent advances in the application of SPL techniques in studying fundamental questions in mechanochemistry.
Polymer brushes, defined as thin polymer coatings in which individual polymer chains are tethered by one chain end to a solid interface. They are considered as the most powerful tools to interface properties. Potential applications of polymer brush patterns span a wide range from organic light emitting diodes (OLEDs) to membranes for desalination and gas separation, from tissue engineering to protein adsorption, controlled surface wettability and the study of fundamentals of cell biology. A number of controlled/“living” polymerization techniques, in particular those based on radical chemistry have been applied to generate such coatings on various types of substrates. It enables the grafting density, the thickness, and the chemistry of the coating to be manipulated very readily without altering the bulk mechanical properties of biomaterials. Responsive polymer brushes are a category of polymer brushes that are capable of conformational and chemical changes in response to external stimuli. They offer unique opportunities for the control of surface properties due to the precise control of chemical and structural parameters such as the brush thickness, density, chemistry, and architecture. In Chapter 2 we will discuss multiplexed stimuli responsive polymer brushes patterns that contain hidden information within the same area.
In Chapter 3 we apply novel printing platform to investigate the mechanosusceptibility of molecules to the applied mechanical energy. Mechanochemical solvent-free reactions by milling, grinding or other types of mechanical action have emerged as a viable alternative to solution chemistry. Mechanochemistry offers not only a possibility to eliminate the need for bulk solvent use, and reduce the generation of waste, but it also unlocks the door to a different reaction environment in which synthetic strategies, reactions and molecules previously not accessible in solution, can be achieved. We have used elastomeric tip arrays to precisely control the time and force applied between dienes and dienophiles on a surface to determine rate constants, activation energies and activation volumes for four reaction systems.},
key = {surface chemistry, mechanochemistry, photochemistry, openQCM, openQCM NEXT, QCM-D},
keywords = {mechanochemistry, openQCM, openQCM NEXT, photochemistry, QCM-D, surface chemistry},
pubstate = {published},
tppubtype = {article}
}
Hunter, Saul J; Elella, Mahmoud H Abu; Johnson, Edwin C; Taramova, Laura; Brotherton, Emma E; Armes, Steven P; Khutoryanskiy, Vitaliy V; Smallridge, Mark J
Mucoadhesive Pickering Nanoemulsions via Dynamic Covalent Chemistry Journal Article
In: Journal of Colloid and Interface Science, 2023.
Abstract | Links | BibTeX | Tags: Aldehyde-Functionalized Nanoparticles, Mucoadhesive Drug, Nanoemulsions, openQCM NEXT, QCM-D, Quartz Crystal Microbalance
@article{hunter2023mucoadhesive,
title = {Mucoadhesive Pickering Nanoemulsions via Dynamic Covalent Chemistry},
author = {Saul J Hunter and Mahmoud H Abu Elella and Edwin C Johnson and Laura Taramova and Emma E Brotherton and Steven P Armes and Vitaliy V Khutoryanskiy and Mark J Smallridge},
url = {https://www.sciencedirect.com/science/article/pii/S0021979723014200},
doi = {https://doi.org/10.1016/j.jcis.2023.07.162},
year = {2023},
date = {2023-07-27},
urldate = {2023-07-27},
journal = {Journal of Colloid and Interface Science},
publisher = {Elsevier},
abstract = {Hypothesis. Submicron oil droplets stabilized using aldehyde-functionalized nanoparticles should adhere to the primary amine groups present at the surface of sheep nasal mucosal tissue via Schiff base chemistry. Experiments. Well-defined sterically-stabilized diblock copolymer nanoparticles of 20 nm diameter were prepared in the form of concentrated aqueous dispersions via reversible addition-fragmentation chain transfer (RAFT) aqueous emulsion polymerization of 2,2,2-trifluoroethyl methacrylate (TFEMA) using a water-soluble methacrylic precursor bearing cis-diol groups. Some of these hydroxyl-functional nanoparticles were then selectively oxidized using an aqueous solution of sodium periodate to form a second batch of nanoparticles bearing pendent aldehyde groups within the steric stabilizer chains. Subjecting either hydroxyl- or aldehyde-functional nanoparticles to high-shear homogenization with a model oil (squalane) produced oil-in-water Pickering macroemulsions of 20-30 µm diameter. High-pressure microfluidization of such macroemulsions led to formation of the corresponding Pickering nanoemulsions with a mean droplet diameter of around 200 nm. Quartz crystal microbalance (QCM) experiments were used to examine adsorption of both nanoparticles and oil droplets onto a model planar substrate bearing primary amine groups, while a fluorescence microscopy-based mucoadhesion assay was developed to assess adsorption of the oil droplets onto sheep nasal mucosal tissue. Findings. Squalane droplets coated with aldehyde-functional nanoparticles adhered significantly more strongly to sheep nasal mucosal tissue than those coated with the corresponding hydroxyl-functional nanoparticles. This difference was attributed to the formation of surface imine bonds via Schiff base chemistry and was also observed for the two types of nanoparticles alone in QCM studies. Preliminary biocompatibility studies using planaria indicated only mild toxicity for these new mucoadhesive Pickering nanoemulsions, suggesting potential applications for the localized delivery of hydrophobic drugs.},
keywords = {Aldehyde-Functionalized Nanoparticles, Mucoadhesive Drug, Nanoemulsions, openQCM NEXT, QCM-D, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {article}
}
Malhotra, Jaskaran Singh; Kubus, Mariusz; Pedersen, Kasper Steen; Andersen, Simon Ivar; Sundberg, Jonas
Room-temperature monitoring of CH4 and CO2 using a metal-organic framework-based QCM sensor showing inherent analyte discrimination Journal Article
In: 2023.
Abstract | Links | BibTeX | Tags: carbon dioxide, CH4, CO2, Dissipation, metal-organic frameworks, methane, openQCM NEXT, QCM, QCM-D, Quartz Crystal Microbalance, sensors
@article{malhotra2023room,
title = {Room-temperature monitoring of CH4 and CO2 using a metal-organic framework-based QCM sensor showing inherent analyte discrimination},
author = {Jaskaran Singh Malhotra and Mariusz Kubus and Kasper Steen Pedersen and Simon Ivar Andersen and Jonas Sundberg},
url = {https://chemrxiv.org/engage/chemrxiv/article-details/646b938eccabde9f6e2fd280},
doi = {https://doi.org/10.26434/chemrxiv-2023-djhp2},
year = {2023},
date = {2023-05-24},
urldate = {2023-05-24},
abstract = {The detection of methane and carbon dioxide is of growing importance due to their negative impact on global warming. This is true both for environmental monitoring, as well as leak detection in industrial processes. Although solid-state sensors are technologically mature, they have limitations that prohibit their use in certain situations, e.g., explosive atmospheres. Thus, there is a need to develop new types of sensor materials. Herein, we demonstrate a simple, low-cost metal-organic framework-based gas leak detection sensor. The system is based on gravimetric sensing using a quartz crystal microbalance. The quartz crystal is functionalized by layer-by-layer growth of a thin metal-organic framework film. This film shows selective uptake of methane or carbon dioxide under atmospheric conditions. The hardware has low cost, simple operation, and theoretically high sensitivity. Overall, the sensor is characterized by simplicity and high robustness. Furthermore, by exploiting the different adsorption kinetics as measured by multiple harmonics analyses, it is possible to discriminate whether the response is due to methane or carbon dioxide. In summary, we demonstrate data relevant towards new applications of metal-organic frameworks and microporous hybrid materials in sensing applications.},
keywords = {carbon dioxide, CH4, CO2, Dissipation, metal-organic frameworks, methane, openQCM NEXT, QCM, QCM-D, Quartz Crystal Microbalance, sensors},
pubstate = {published},
tppubtype = {article}
}
Maity, Tanmoy; Malik, Pratibha; Bawari, Sumit; Ghosh, Soumya; Mondal, Jagannath; Haldar, Ritesh
Chemically routed interpore molecular diffusion in metal-organic framework thin films Journal Article
In: Nature Communications, vol. 14, no. 1, pp. 2212, 2023.
Abstract | Links | BibTeX | Tags: molecular diffusion, Nanoporous channels, openQCM NEXT, QCM, QCM-D, Quartz Crystal Microbalance
@article{maity2023chemically,
title = {Chemically routed interpore molecular diffusion in metal-organic framework thin films},
author = {Tanmoy Maity and Pratibha Malik and Sumit Bawari and Soumya Ghosh and Jagannath Mondal and Ritesh Haldar},
url = {https://pubmed.ncbi.nlm.nih.gov/37072404/},
doi = {https://doi.org/10.1038/s41467-023-37739-8},
year = {2023},
date = {2023-04-18},
urldate = {2023-04-18},
journal = {Nature Communications},
volume = {14},
number = {1},
pages = {2212},
publisher = {Nature Publishing Group UK London},
abstract = {Transport diffusivity of molecules in a porous solid is constricted by the rate at which molecules move from one pore to the other, along the concentration gradient, i.e. by following Fickian diffusion. In heterogeneous porous materials, i.e. in the presence of pores of different sizes and chemical environments, diffusion rate and directionality remain tricky to estimate and adjust. In such a porous system, we have realized that molecular diffusion direction can be orthogonal to the concentration gradient. To experimentally determine this complex diffusion rate dependency and get insight of the microscopic diffusion pathway, we have designed a model nanoporous structure, metal-organic framework (MOF). In this model two chemically and geometrically distinct pore windows are spatially oriented by an epitaxial, layer-by-layer growth method. The specific design of the nanoporous channels and quantitative mass uptake rate measurements have indicated that the mass uptake is governed by the interpore diffusion along the direction orthogonal to the concentration gradient. This revelation allows chemically carving the nanopores, and accelerating the interpore diffusion and kinetic diffusion selectivity.},
keywords = {molecular diffusion, Nanoporous channels, openQCM NEXT, QCM, QCM-D, Quartz Crystal Microbalance},
pubstate = {published},
tppubtype = {article}
}
Qi, Shaojun; Kiratzis, Ioannis; Adoni, Pavan; Tuekprakhon, Aekkachai; Hill, Harriet James; Stamataki, Zania; Nabi, Aneesa; Waugh, David; Rodriguez, Javier Rodriguez; Clarke, Stuart Matthew; others,
Porous Cellulose Thin Films as Sustainable and Effective Antimicrobial Surface Coatings Journal Article
In: ACS Applied Materials & Interfaces, 2023.
Abstract | Links | BibTeX | Tags: antimicrobial, cellulose, evaporation, film, openQCM NEXT, QCM, QCM-D, Quartz Crystal Microbalance, robustness, SARS-CoV-2
@article{qi2023porous,
title = {Porous Cellulose Thin Films as Sustainable and Effective Antimicrobial Surface Coatings},
author = {Shaojun Qi and Ioannis Kiratzis and Pavan Adoni and Aekkachai Tuekprakhon and Harriet James Hill and Zania Stamataki and Aneesa Nabi and David Waugh and Javier Rodriguez Rodriguez and Stuart Matthew Clarke and others},
url = {https://pubs.acs.org/doi/full/10.1021/acsami.2c23251},
doi = {https://doi.org/10.1021/acsami.2c23251},
year = {2023},
date = {2023-03-29},
urldate = {2023-01-01},
journal = {ACS Applied Materials & Interfaces},
publisher = {ACS Publications},
abstract = {In the present work, we developed an effective antimicrobial surface film based on sustainable microfibrillated cellulose. The resulting porous cellulose thin film is barely noticeable to human eyes due to its submicrometer thickness, of which the surface coverage, porosity, and microstructure can be modulated by the formulations and the coating process. Using goniometers and a quartz crystal microbalance, we observed a threefold reduction in water contact angles and accelerated water evaporation kinetics on the cellulose film (more than 50% faster than that on a flat glass surface). The porous cellulose film exhibits a rapid inactivation effect against SARS-CoV-2 in 5 min, following deposition of virus-loaded droplets, and an exceptional ability to reduce contact transfer of liquid, e.g., respiratory droplets, to surfaces such as an artificial skin by 90% less than that from a planar glass substrate. It also shows excellent antimicrobial performance in inhibiting the growth of both Gram-negative and Gram-positive bacteria (Escherichia coli and Staphylococcus epidermidis) due to the intrinsic porosity and hydrophilicity. Additionally, the cellulose film shows nearly 100% resistance to scraping in dry conditions due to its strong affinity to the supporting substrate but with good removability once wetted with water, suggesting its practical suitability for daily use. Importantly, the coating can be formed on solid substrates readily by spraying, which requires solely a simple formulation of a plant-based cellulose material with no chemical additives, rendering it a scalable, affordable, and green solution as antimicrobial surface coating. Implementing such cellulose films could thus play a significant role in controlling future pan- and epidemics, particularly during the initial phase when suitable medical intervention needs to be developed and deployed.},
key = {cellulose, film, antimicrobial, evaporation, SARS-CoV-2, robustness},
keywords = {antimicrobial, cellulose, evaporation, film, openQCM NEXT, QCM, QCM-D, Quartz Crystal Microbalance, robustness, SARS-CoV-2},
pubstate = {published},
tppubtype = {article}
}
openQCM – Powered by Novaetech S.r.l