openQCM – Powered by Novaetech S.r.l
Publications citing the applications of openQCM (by Novaetech S.r.l.) instruments and accessories in scientific research.
The list of scientific papers published on the most important journals showing the usage of openQCM in several scientific fields, such as thin film deposition, chemical sensors, biological research and biosensors.
Because of the large number of publications, we are reorganizing everything by subject areas. This will take some time. Thank you for your patience
Censor, Semion; Martin, Jorge Vega; Silberbush, Ohad; Reddy, Samala Murali Mohan; Zalk, Ran; Friedlander, Lonia; Trabada, Daniel G.; Mendieta, Jesús; Saux, Guillaume Le; Moreno, Jesús Ignacio Mendieta; Zotti, Linda Angela; Mateo, José Ortega; Ashkenasy, Nurit
Long-Range Proton Channels Constructed via Hierarchical Peptide Self-Assembly Journal Article
In: Advanced Materials, vol. n/a, no. n/a, pp. 2409248, 2024.
Abstract | Links | BibTeX | Tags: Dissipation, molecular dynamic simulations, openQCM Q-1, peptides, proton channels, proton transport, QCM-D, Quartz Crystal Microbalance, self-assembly
@article{https://doi.org/10.1002/adma.202409248,
title = {Long-Range Proton Channels Constructed via Hierarchical Peptide Self-Assembly},
author = {Semion Censor and Jorge Vega Martin and Ohad Silberbush and Samala Murali Mohan Reddy and Ran Zalk and Lonia Friedlander and Daniel G. Trabada and Jesús Mendieta and Guillaume Le Saux and Jesús Ignacio Mendieta Moreno and Linda Angela Zotti and José Ortega Mateo and Nurit Ashkenasy},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202409248},
doi = {https://doi.org/10.1002/adma.202409248},
year = {2024},
date = {2024-11-12},
journal = {Advanced Materials},
volume = {n/a},
number = {n/a},
pages = {2409248},
abstract = {Abstract The quest to understand and mimic proton translocation mechanisms in natural channels has driven the development of peptide-based artificial channels facilitating efficient proton transport across nanometric membranes. It is demonstrated here that hierarchical peptide self-assembly can form micrometers-long proton nanochannels. The fourfold symmetrical peptide design leverages intermolecular aromatic interactions to align self-assembled cyclic peptide nanotubes, creating hydrophilic nanochannels between them. Titratable amino acid sidechains are positioned adjacent to each other within the channels, enabling the formation of hydrogen-bonded chains upon hydration, and facilitating efficient proton transport. Moreover, these chains are enriched with protons and water molecules by interacting with immobile counter ions introduced into the channels, increasing proton flow density and rate. This system maintains proton transfer rates closely resembling those in natural protein channels over micrometer distances. The functional behavior of these inherently recyclable and biocompatible systems opens the door for their exploitation in diverse applications in energy storage and conversion, biomedicine, and bioelectronics.},
keywords = {Dissipation, molecular dynamic simulations, openQCM Q-1, peptides, proton channels, proton transport, QCM-D, Quartz Crystal Microbalance, self-assembly},
pubstate = {published},
tppubtype = {article}
}
György, Dr. Csilla; Kirkman, Dr. Paul M.; Neal, Dr. Thomas J.; Chan, Dr. Derek H. H.; Williams, Megan; Smith, Dr. Timothy; Growney, Dr. David J.; Armes, Prof. Steven P.
Enhanced Adsorption of Epoxy-Functional Nanoparticles onto Stainless Steel Significantly Reduces Friction in Tribological Studies Journal Article
In: Angewandte Chemie International Edition, 2023.
Abstract | Links | BibTeX | Tags: epoxy-functional noparticles, nanoparticles, polymerization, polymerization-induced, QCM-D, Quartz Crystal Microbalance, RAFT, self-assembly, stainless steel
@article{armesenhanced,
title = {Enhanced Adsorption of Epoxy-Functional Nanoparticles onto Stainless Steel Significantly Reduces Friction in Tribological Studies},
author = {Dr. Csilla György and Dr. Paul M. Kirkman and Dr. Thomas J. Neal and Dr. Derek H. H. Chan and Megan Williams and Dr. Timothy Smith and Dr. David J. Growney and Prof. Steven P. Armes},
url = {https://onlinelibrary.wiley.com/doi/10.1002/anie.202218397},
doi = {https://doi.org/10.1002/anie.202218397},
year = {2023},
date = {2023-01-18},
urldate = {2023-01-18},
journal = {Angewandte Chemie International Edition},
publisher = {Wiley Online Library},
abstract = {Epoxy-functional sterically-stabilized diblock copolymer nanoparticles (~27 nm) are prepared via RAFT dispersion polymerization in mineral oil. Nanoparticle adsorption onto stainless steel is examined using a quartz crystal microbalance. Incorporating epoxy groups within the steric stabilizer chains results in a near two-fold increase in the adsorbed amount, Γ, at 20 °C (7.6 mg m-2) compared to epoxy-core functional nanoparticles (3.7 mg m-2) or non-functional nanoparticles (3.8 mg m-2). A larger difference in Γ is observed at 40 °C; this suggests chemical adsorption of the nanoparticles rather than merely physical adsorption. A remarkable near five-fold increase in Γ is observed for larger (~50 nm) epoxy-functional nanoparticles compared to non-functional nanoparticles (31.3 vs. 6.4 mg m-2, respectively). Tribological studies conducted at 60-120 °C confirm that the adsorption of epoxy-functional nanoparticles leads to a significant reduction in the friction coefficient.},
key = {QCM-D, nanoparticles},
keywords = {epoxy-functional noparticles, nanoparticles, polymerization, polymerization-induced, QCM-D, Quartz Crystal Microbalance, RAFT, self-assembly, stainless steel},
pubstate = {published},
tppubtype = {article}
}
openQCM – Powered by Novaetech S.r.l